ADEM

ALABAMA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT GROUNDWATER BRANCH

1400 COLISEUM BOULEVARD MONTGOMERY, ALABAMA 36130-1463 Ph.: (334) 270-5655 Fax.: (334) 270-5631

MAILING ADDRESS: P.O. BOX 301463 MONTGOMERY, ALABAMA 36130

ARBCA FOR USTs TIER 1 REPORT FORMS (Revision 1.0, November 2001)

SITE NAME:	ALARNG OMS 28 Pit # 2
FACILITY I.D.:	14587-097-012257
UST INCIDENT NO.:	#93-02-15
SUBMITTAL DATE:	1 September 2005

	ARBCA REPORT FORMS		
TABLE OF CONTENTS (Page 1 of 3)			
Indicate	Indicate the forms used in this ARBCA analys \square Check to select.		
ARBCA	REPORT FORMS FOR TIER 1 EVALUATION		
1	Executive Summary	\square	
2	Facility Information	\square	
3	UST Site Classification System Checklist		
4	Site Description	\bowtie	
5	Land Use	X X X X X	
6	Chronology of Events		
7	Release Characterization	\square	
8	Free Product	\square	
9	Site Stratigraphy and Hydrogeology	\square	
10	Groundwater Use	XXXX	
11	Surface Water Use	\square	
12	Ecological Receptors and Habitats	\square	
13	Analytical Data Summary for Surficial Soil		
14	Analytical Data Summary for Subsurface Soil	\square	
15	Analytical Data from Groundwater Supply Wells		
16	Analytical Data Summary for Groundwater	\square	
17	Site Conceptual Exposure Model		
18	Comparison of Tier 1 RBSLs with Representative Concentrations	\square	
19	Tier 1 Groundwater Resource Protection Target Concentrations	\square	
20	Tier 1 Stream Protection Target Concentrations		
21a	Tier 1 On-Site Target Levels for Inhalation and Ingestion	\square	
21b	Tier 1 Off-Site Target Levels for Inhalation and Ingestion	\square	
22	Tier 1 Conclusions and Recommendations	\square	
23	References and Protocol	\square	
ARBCA	REPORT FORMS FOR TIER 2 EVALUATION		
24	Tier 2 Fate and Transport Parameters	\square	
25	Justification for Tier 2 Fate and Transport Parameters	\square	
26	Comparison of Tier 2 SSTLs with Representative Concentrations	\square	
27	Tier 2 Groundwater Resource Protection Target Concentrations	\square	
28	Tier 2 Stream Protection Target Concentrations		
29a	Tier 2 On-Site Target Levels for Inhalation and Ingestion	\square	
29b	Tier 2 Off-Site Target Levels for Inhalation and Ingestion	\square	
30	Tier 2 Conclusions and Recommendations		
	REPORT FORMS FOR TIER 3 EVALUATION	_	
31	Tier 3 Evaluation		
32	Tier 3 Fate and Transport Parameters		
33	Justification for Tier 3 Fate and Transport Parameters		
34	Tier 3 Exposure Factors		
35	Justification for Tier 3 Exposure Factors		
36	Tier 3 Conclusions and Recommendations		

ARBCA REPORT FORMS

TABLE OF CONTENTS (Page 2 of 3)

Attachmen t No.	Indicate the attachments provided in this ARBCA analyss. Check select. All maps submitted to the ADEM must include a bar scale, legend, north arrow, location of all known soil borings and monitorin wells, and date of map, where appropriate.	to ng
1	Topographic Map	\square
2	Site Map with Utility Locations	\square
3	Land Use Map (Radius of 500 feet)	\square
4	Area Map - with detailed land use in the vicinity of the site (detailed in the downgradient direction and at least one property deep on all other sides including across the street)	
5	Representative Soil Boring Logs and Well Construction Diagram - with monitoring well screen interval, size, and depth (also indicate sample depths, field screening results, and initial water level)	
6	Stratigraphic Cross-Section - showing the stratigraphy of the site	\square
7	Area Geologic Map	\square
8	Area Map with Well Locations - within 1000 feet (for private wells) or 1 mile (for public wells) radius of the site (the wells on the map must be labeled). Map must also indicate the location of streams, lakes, etc., within a 500 foot radius of the site.	
9	Groundwater Gradient Map - contoured map with the flow direction from the most recent sampling event	
10	Soil Concentration Maps - for Benzene, MTBE, Total BTEX, and Naphthalene from the most recent sampling event	\square
11	Groundwater Concentration and Contour Maps - for Benzene, MTBE, Total BTEX, and Naphthalene from the most recent sampling event. Include free product thickness, if present.	
12	Time vs. Concentration Trend Graphs - for Benzene, MTBE, Total BTEX, and Naphthalene if three or more sampling events have occurred per well	
13	Map Identifying all Points of Exposure - for both current and future conditions	
14	Site Map showing the source dimensions (Wa, W, and Y)	\boxtimes
15	Representative Site Concentrations – Calculations	\square
16	Historical Groundwater Summary Tables	\square
17	Site map showing polygons developed for off-site and on-site	\bowtie

	representative concentrations	
18	Dilution Attenuation Factor calculations	\square
19	Site map showing site-specific parameters equivalent to those indicated on Figure C-1, Appendix C of the guidance document (only for stream protection evaluation.)	

ARBCA REPORT FORMS

TABLE OF CONTENTS (Page 3 of 3)

Attachmen t No.	Indicate the attachments provided in this ARBCA analy s. Check to select. All maps submitted to the ADEM must include a bar scale, legend, north arrow, location of all known soil borings and monitoring wells, and date of map, where appropriate.
	Other Relevant Attachments
20	
21	
22	
23	
24	
25	
26	

Include the above attachments in order and append them to the report forms.

ARBCA SUMMARY REPORT	FORM NO. 1		
UST Incident #93-02-15 No(s).:	Facility ID: 14587-097-012257		
Date form 1 September 2005 completed:	Form completed by: Andrew Weinberg		
EXECUTIVE	SUMMARY		
Facility name:	ALARNG OMS 28 Pit #2		
Facility address:	1622 South Broad Street, Mobile County		
	Mobile, Alabama		
Status of facility:	Active Inactive		
Ground surface condition:	Recent concrete pavement in excellent condition.		
Estimated volume of product released:	Unknown		
Is native soil impacted?	On-site Off-site		
Is groundwater impacted?	On-site Off-site		
Has the source of release been identified?	Yes - former gas/diesel UST with hole in east end, removed in 1992.		
Has free product associated with this release ever been detected?	Yes. Droplets of free product and sheen detected in 2004.		
Was free product removed?	Yes, 8-hour vacuum extraction event in Dec. 2004 removed ~ 1 gallon of hydrocarbons.		
Was free product detected in the most recent sampling event?	No; sheen only. Additional product removal deemed impractical.		
Has surface water been impacted by this release?	No.		
Shallowest historical depth to groundwater:	2.19 feet below ground surface.		
Average historical depth to groundwater:	4.29 feet below ground surface		
Has a water supply well been impacted by this release?	No.		

RECOMMENDATIONS

Tier	1
	No Further Action (NFA) under Tier 1
	Remediate and NFA under Tier 1
	Perform compliance/confirmatory monitoring
\boxtimes	Go to Tier 2
Tier	2
	No Further Action (NFA) under Tier 2
	Remediate and NFA under Tier 2
\square	Perform compliance/confirmatory monitoring
	Go to Tier 3
Tier	3
	No Further Action (NFA) under Tier 3
	Remediate and NFA under Tier 3
	Perform compliance/confirmatory monitoring

ADDITIONAL NOTES

Soil and groundwater contamination is restricted to a small area on-site. The site meets Tier 1 RBSLs for all pathways and receptors except for direct ingestion of on-site groundwater from the plume area. Tier 2 evaluation is required because of the shallow depth to groundwater.

FORM NO. 2

UST Incident No(s).:

#93-02-15

Facility ID: 14587

14587-097-012257

Date form completed:

1 September 2005

Form completed by: Andrew Weinberg

FACILITY INFORMATION

Facility name:	ALARNG OMS 28 Pit #2
Facility address:	1622 South Broiad Street
Facility city:	Mobile
Facility county:	Mobile
Tank owner/Responsible Party (RP):	Alabama Army National Guard
Tank owner/RP address:	Alabama Army National Guard
Tank owner/RP city/state/zip:	PO Box 3711, Montgomery, AL 36109
Tank owner/RP phone no.:	Wayne Sartwell, (334) 271-7427
Property owner:	Alabama Army National Guard
Property owner's address:	PO Box 3711,
Property owner's city/state/zip:	PO Box 3711, Montgomery, AL 36109

CERTIFICATION

Section (a): ARBCA Evaluator:

I certify that the ARBCA evaluation as stated in this report was prepared under my supervision. I am experienced in the concepts and procedures of risk assessment and risk management as they relate to the ARBCA evaluation process. I am either an Alabama Registered Professional Engineer or a Geologist.

ARBCA Evaluator

Date

Printed Name

Company Name

Registration Number(s)

Section (b): Tank or Property Owner:

By signature below, I certify that I have reviewed this report for completeness.

Tank or Property Owner Signature

Tank or Property Owner Printed Name

Date

ADDITIONAL NOTES

UST Incident No(s).:

#93-02-15

14587-097-012257

FORM NO. 3

Date form completed:

1 September 2005

Form completed by: Andrew Weinberg

UST SITE CLASSIFICATION SYSTEM CHECKLIST (Page 1 of 2)

Facility ID:

CLASSIFICATION	DESCRIPTION	YES	NO
CLASS A	IMMEDIATE THREAT TO HUMAN HEALTH, HUMAN SAFETY OR SENSITIVE ENVIRONMENTAL RECEPTOR		ENTAL
A.1	Vapor concentrations at or approaching explosive levels that could cause health effects, are present in a residence or building.		
A.2	Vapor concentrations at or approaching explosive levels are present in subsurface utility system(s), but no buildings or residences are impacted.		

CLASS B	IMMEDIATE THREAT TO HUMAN HEALTH, HUMAN SAFETY OR SENSITIVE ENVIRONMENTAL RECEPTOR		
B.1	An active public water supply well, public water supply line, or public surface water intake is impacted or immediately threatened.		\boxtimes
B.2	An active domestic water supply well, domestic water supply line or domestic surface water intake is impacted or immediately threatened.		\boxtimes
B.3	The release is located within a designated Source Water Assessment Area I.		\boxtimes

CLASS C	IMMEDIATE THREAT TO HUMAN HEALTH, HUMAN SAFETY OR SENSITIVE ENVIRONMENTAL RECEPTOR		
C.1	Ambient vapor/particulate concentrations exceed concentrations of concern from an acute exposure, or safety viewpoint.		
C.2	Free product is present on the groundwater, at ground surface, on surface water bodies, in utilities other than water supply lines, or in surface water runoff.		\boxtimes

CLASS D	SHORT TERM THREAT TO HUMAN HEALTH, SAFETY, OR SENSITIVE ENVIRONMENTAL RECEPTORS		
D.1	There is a potential for explosive levels, or concentrations of vapors that could cause acute effects, to accumulate in a residence or other building.		
D.2	A non-potable water supply well is impacted or immediately threatened.		
D.3	Shallow contaminated surface soils are open to public access, and dwellings, parks, playgrounds, day care centers, schools or similar use facilities are within 500 feet of those soils.		
CLASS E SHORT TERM THREAT TO HUMAN HEALTH, SAFETY, OR SENSITIVE ENVIRONMENTAL RECEPTORS			

E.1	A sensitive habitat or a sensitive resource (sport fish, economically important species, threatened and endangered species, etc.) is impacted and affected.		
-----	---	--	--

UST Incident No(s).:

#93-02-15

14587-097-012257

Facility ID:

FORM NO. 3

Date form completed: 1 September 2005

Form completed by: Andrew Weinberg

UST SITE CLASSIFICATION SYSTEM CHECKLIST (Page 2 of 2)

CLASSIFICATI ON	DESCRIPTION		NO
CLASS F SHORT TERM THREAT TO HUMAN HEALTH, SAFETY, OR SENSITIVE ENVIRONMENTAL RECEPTORS			
F.1	Groundwater is impacted and a public well is located within 1 mile of the site.		\square
F.2	Groundwater is impacted and a domestic well is located within 1,000 feet of the site.		\square
F.3	Contaminated soils and/or groundwater are located within designated Source Water Assessment Area II.		
CLASS G	SHORT TERM THREAT TO HUMAN HEALTH, SAFETY, OR SENSITIVE ENVIRONM RECEPTORS	IENTAL	
G.1	Contaminated soils and/or groundwater are located within areas vulnerable to contamination from surface sources.		
GLASS H	SHORT TERM THREAT TO HUMAN HEALTH, SAFETY, OR SENSITIVE ENVIRONM RECEPTORS	/IENTAL	

H.1	Impacted surface water, storm water or groundwater discharges within 500 feet of a surface water body used for human drinking water, whole body water-contact sports, or habitat to a protected or listed endangered plant and animal species.			
-----	--	--	--	--

CLASS I	LONG TERM THREAT TO HUMAN HEALTH, SAFETY, OR SENSITIVE ENVIRONM RECEPTORS	ENTAL	
I.1	Site has contaminated soils and/or groundwater but does not meet any of the above mentioned criteria.	\boxtimes	

Complete the classification evaluation questions listed above. Upon completion, determine the highest rank of the site (A.1 is the highest rank) based on the statements answered with an YES.

Determined Site Classification

I.1

No routes of exposure to site contaminants are currently complete. Although the area has a shallow water table and sandy soil, the immediate vicinity of the site is covered with 8 inches of concrete so that vulnerablity to continued soil-to-groundwater contaminant migration (Class G) is limited.

ARBCA SUMMARY REPORT							FORM NO. 4
UST Incident #93-02-15 No(s).:			Facili	ty ID:		14587-097-03	12257
Date form 1 September 2005 completed:	5		Form	comple	eted by:	Andrew Weir	ıberg
	SITE DE	SC	RIPT	ION			
	SITI	E ST	ATUS				
 Operating Temporarily out of service from Permanently out of service. Tanks perma 	anently closed	in	to 1992				
G	ROUND SUR	RFA	CE COI	DITION	1		
□ Unpaved ☑ Paved % area paved 100 Any visible cracks in the pavement? □ Y	TES 🔀	Mat NO	erial _	Reinforce	ed concrete	, 8" thick	
	SUBSURF	ACE	UTILI	TIES			
In the space provided for additional notes, please	indicate the lo	ocati	ons and	distances	to the near	rest utility access	point (manholes).
Have the utilities been screened for vapor levels? If YES, attach documentation of vapor monitorin		YE				No utilities are l downgradient of water collection to OWS is locate upgradient (east) location.	source Storm system draining ed 30 ft
Are the utilities covered?		YES	_] NO	Notes:		
Indicate which of the following utilities cur						to become condui	ts under the
<i>columns "Impacted by Release", and "Poten</i> <u>Utilities Present at the Site</u> <u>Depth</u> <u>1</u> [feet]	ntially Impaci Type of Mater			se", respe Flow Dire	-	Impacted by <u>Release</u>	<u>Potentially</u> <u>Impacted by</u> <u>Release</u>
Sanitary Sewer unk unl				radient		no	no
Covered Storm Sewer unk unl	K		uog	gradient		no	no
Water Line unk unl	k		upg	radient		no	no
Gas Line unl						no	no
	verhead electric verhead phone	с				no	no
	emead phone		_			no	no
CURRENT STATUS OF					TINGS/PU	RGE WATER	
If any USTs or ASTs were over-excavated, discus		f exci	avated s				[4 ¹
Stockpiled On-site	<u>Date</u>			Qua	<u>nuty</u>		<u>Location</u>
Disposed Off-site							
Used (as fill material,) On-site 1992		_	50	cubic yar	ds	spread i site arou	n thin layer on- ind pit
Used as Road Base							

OMS 28 Tier 1 forms.DOC (Revision 1.0)

Soil Farm		
Stockpiled Off-site		
Purge Water		

ADDITIONAL NOTES

Utility clearances obtained for the most recent investigation indicate that all utility lines are east (upgradient) of the former tank location and are in unimpacted areas.

ARBCA SUMMARY REPORT				FORM NO. 5
UST Incident No(s).:	#93-02-15		Facility ID:	14587-097-012257
Date form completed:	1 September 2005		Form completed by	y: Andrew Weinberg
LAND USE				
Current On-Site	Land Use		Future On-Site I	Land Use

Residential	
Commercial	
Sensitive/Special	
Other	

Current

	Future
Residential	
Commercial	\square
Sensitive/Special	
Other	

Comments: *Discuss land use if "Other" option is chosen. Justify the choice for the future land use.*

The site is an active vehicle maintenance shop for the Alabama Army National Guard and is excpected to remain so for the foreseeable future. The site is not included in the most recent BRAC listing.

Immediate Off-site Land Use (*within 500 feet - at a minimum, state whether residential or commercial*)

	/		
North:	Residential, single family homes		
-	Northeast:	Residential, single family homes	
	Northwest:	Commercial: Union Pacific Railroad and I-10 right of way	
South	Commercial/Industrial		
-	Southeast:	Commercial: ALARNG Fort Whiting	
	Southwest:	Commercial: ALARNG storage areas	
West:	Vacant City of Mobile property and Commercial (Union Pacific and I-10 right of way)		
East:	Commercial: ALARNG shops and armory		

ADDITIONAL OFF-SITE RECEPTOR SURVEY

List the distance and direction (downgradient, upgradient, or crossgradient) to these facilities – up to a maximum distance of 1000 feet.

	Distance [ft]	Direction
Nearest residential site:	300	Cross-gradient
Nearest commercial site:	>1000	Cross-gradient
Nearest industrial site:	200	Upgradient
If site vacant, nearest inhabited building:	200	Upgradient
Environmentally sensitive area within a 1000 foot radius:	>1000	Upgradient

OMS 28 Tier 1 forms.DOC (Revision 1.0)

November 2001

>1000

ADDITIONAL NOTES

Downgradient land is undeveloped city-owned property. The downgradient land is situated between the ALARNG facility and an active rail line adjacent to I-10. Residential development of this parcel is extremely unlikely.

FORM NO. 6

UST Incident No(s).:

#93-02-15

Facility ID:

14587-097-012257

Date form completed:

1 September 2005

Form completed by: Andrew Weinberg

CHRONOLOGY OF EVENTS

Date Oct 1992	 Instructions: Describe potential sources and spill events, including location, type, and estimated volume of materials stored or released, time and duration of release, and affected media (e.g. soil, groundwater, etc.). Describe monitoring well installation, soil boring activities, and slug tests. Also discuss past corrective action efforts as appropriate. P.E. LaMoreaux and Assoc. (PELA) removes 2,000 gallon UST and excavates ~ 50 c.y. of contaminated soil. Composite samples from the exacavated soil contain up to 427 ppm TPH. Pit wall/floor samples contain up to 49 ppm TPH. Four monitoring wellse installed. Soil samples analyzed for TPH only and groundwater samples are analyzed for BTEX and PAHs.
Dec 1993	Preliminary Investigation Report submitted to ADEM. High levels of benzene reported in MW-1 immediately west of the former UST location. Extent of groundwater contamination not defined
April - Oct 1994	PELA installs one additional borehole and four temporary wells to characterize the extent of soil and groundwater contamination at the site. Two additional permanent wells installed. Groundwater sampled for BTEX, PAHs, and lead; plume extends <100 ft from source. Soil TPH extends ~15 ft west of excavation. Results define area of soil and groundwater contamination.
Dec 1994	Secondary Investigation report submitted to ADEM. Extent of soil and groundwater contamination defined. Only trace concentrations of groundwater contaminants detected except in MW-1.
Feb 1995	Quarterly groundwater monitoring initiated by Analytical Chemical Testing Laboratories, Inc. for BTEX only
Jun 1995	Second quarterly groundwater monitoring by Analytical Chemical Testing Laboratories, Inc. for BTEX only.

Third quarterly groundwater monitoring by Analytical Chemical Testing Laboratories, Inc. for BTEX only

Page 1 of

FORM NO. 6

UST Incident No(s).:

#93-02-15

Facility ID: 14587-097-012257

Date form completed:

1 September 2005

Form completed by: Andrew Weinberg

CHRONOLOGY OF EVENTS

<u>Date</u>	Instructions : Describe potential sources and spill events, including location, type, and estimated volume of materials stored or released, time and duration of release, and affected media (e.g. soil, groundwater, etc.). Describe monitoring well installation, soil boring activities, and slug tests. Also discuss past corrective action efforts as appropriate.
Dec 1995	Fourth quarterly groundwater monitoring by Analytical Chemical Testing Laboratories, Inc. for BTEX, PAHs, and lead.
May 1996	PELA conducts groundwater monitoring at site for BTEX only.
Feb 1997	PELA conducts groundwater monitoring at site for BTEX only.
July 1997	PELA conducts groundwater monitoring at site for BTEX and dissolved oxygen
Oct 2001	Groundwater samples collected by unknown persons and analyzed for BTEX and MTBE.
Oct 2002	Site covered in concrete pavement. Monitor well MW-4 removed.

March 2004	Bechtel-S Corp collects groundwater samples for BTEX, MTBE, napthalene,
	PAHs, and lead. Results indicate plume migration at least to MW-6.
	Subsurface soils outside source area sampled for BTEX & MTBE, and
	upgradient soil sampled for geotechnical properties only. Four monitoring
	wells slug tested to estimate hydraulic conductivity.

Page 2 of

FORM NO. 6

UST Incident No(s).:

#93-02-15

Facility ID:

14587-097-012257

Date form completed:

1 September 2005

Form completed by: Andrew Weinberg

CHRONOLOGY OF EVENTS

<u>Date</u>	Instructions : Describe potential sources and spill events, including location, type, and estimated volume of materials stored or released, time and duration of release, and affected media (e.g. soil, groundwater, etc.). Describe monitoring well installation, soil boring activities, and slug tests. Also discuss past corrective action efforts as appropriate.
Nov 2004	Groundwater grab samples collected downgradient of concrete-paved area by Bechtel-S and analyzed for BTEX to define current extent of plume. New upgradient and downgradient monitoring wells installed. Two piezometers installed to define hydraulic gradients. Results indicate no off-site migration of UST-related contaminants.
Dec 2004	Eight-hour multi-phase vacuum extraction event conducted at MW-1. Approximately 5.6 lbs hydrocarbons and 540 gallons water removed. No measureable impact on neighboring wells.
Mar 2005	Groundwater samples collected from all monitoring wells on site by Bechtel- S. Samples analyzed for BTEX, PAHs, and lead.
May 2005	Draft Secondary Investigation Addendum Report prepared by Bechtel-S, containing compete analytical reports for groundwater samples collected in November 2004 and March 2005 and a report on the December 2004 free product removal event.

ARBCA SUMMARY REPORT	FORM NO. 7							
UST Incident #93-02-15 No(s).:	Facility ID: 14587-097-012257							
Date form 1 September 2005 completed:	Form completed by: Andrew Weinberg							
RELEASE CHARACTERIZATION								
UST Removal Failed System Tightness Test Inventory Control Facility Remodeling/Construction activity Closure in Place	Environmental Assessment Citizen Complaint Known Spill Incident Unknown Other (specify)							
SOURCE(S)	OF RELEASE							
Spills/Overfills Piping Dispenser Islands	Tanks Unknown Other (specify)							
SUBSTANCE	(S) RELEASED							
Gasoline Diesel Used Oil AV Gas	Jet Fuel Hydraulic Fluid Kerosene Other (specify)							
CHEMICALS	OF CONCERN							
⊠ Benzene ⊠ Benzo(b)fluo ⊠ Toluene ⊠ Benzo(k)fluo ⊠ Ethylbenzene ⊠ Benzo(g,h,i)p ⊠ Xylenes (mixed) ⊠ Chrysene □ Methyl-tert-Butyl-Ether ⊠ Fluoranthene ⊠ Anthracene ⊠ Fluorene ⊠ Benzo(a)anthracene ⊠ Naphthalene ⊠ Benzo(a)pyrene ⊠ Phenanthrene	ranthene Arsenic Arsenic Barium Cadmium (VI) Lead Zinc Zinc							
SUMMAR	Y OF SPILL							
Has the source of release been identified?Yes, 1/2" hole in tank noted on removalHas the release been eliminated?Yes, tank, piping, and distribution system removedIs native soil impacted?Yes; 50 cy contaminated soil removed from tank areaIs groundwater impacted?Yes; BTEX plume extends ~120 ft downgradient of former tank siteIs surface water impacted?No; there has been no surface release and no surface water is present in the vicinity of the site.								
DETAILS OF KNO	OWN SPILLS (if any)							
Date Released Lo	Cation Quantity allon UST unknown							

ADDITIONAL NOTES

Closure Assessment Report documented a 1/2 to 3/4 inch hole in the east end of the UST during the removal process. It is unknown how long this tank was in service and leaking or what volume of product might have leaked from the UST.

FORM NO. 8

UST Incident No(s).:

#93-02-15

14587-097-012257

Date form completed:

1 September 2005

Form completed by: Andrew Weinberg

FREE PRODUCT

Facility ID:

SUMMARY OF FREE PRODUCT									
Has free product been found at the site?	YES NO								
Date free product was released (if known): Prior to 1992									
Type of free product released:	Gasoline and/or diesel								
Estimated quantity of free product released:	unknown								
List the monitoring wells historically containing free product:	On-site: MW-1								
	Off-site: None								
List the monitoring wells currently at the site:	On-site: MW-1, -2, -3, -5, -6, -7, and -8								
	Off-site: None								
List the monitoring wells currently containing free product:	On-site: None								
	Off-site: None								
Denote the greatest thickness (to the nearest 1/100 foot):	Sheen (<1/100 ft) feet								
	Well ID: MW-1 Date: 3/10/2004								
FREE PRODU	JCT REMOVAL								
Has free product removal been initiated?	X YES NO								
-									
If YES, what is the method of removal (bailer, pump, etc.)?	Dual-phase vacuum extraction								
If NO, cite reason:									

Frequency of removal (weekly, monthly, etc.): Total number of recovery events to date:

Total amount of fluids recovered (purgewater and free prod	luct): 540 gallons
Total amount of free product recovered:	~ 1 gallon
Date of latest free product removal event:	Dec 10 2004

ADDITIONAL NOTES

One time

1

Trace quantities of free product are present in MW-1, located about 10 ft west of the former tank location. While this well has consistently contained elevated concentrations of BTEX, free product was not noted prior to 2004. This may be because previous sampling was conducted with bailers or some other technique that did not adequately purge the well prior to sampling, or because water levels were generally higher during previous sampling events, limiting product mobility; however no detailed monitoring well sampling log forms are included in any of the previous reports. Only residual amounts of free product are present, trapped in soil pores. The free product is not easily recoverable, even with aggressive methods such as dual-phase extraction. There is no indication that the free product is mobile under natural conditions.

FORM NO. 9

UST	Incident
No(s)).:

#93-02-15

Facility ID: 14587-097-012257

Date form

completed:

1 September 2005

Form completed by: Andrew Weinberg

SITE STRATIGRAPHY AND HYDROGEOLOGY

STRATIGRAPHY OF THE SITE									
Depth [feet] Description of Soil									
0 - 0.75	Reinforced concrete								
0.75 - 1.25	Gravel pavement/fill								
1.25 - 15.0	Fine to very fine	e silty sand and claye	ey sand with oc	casional shell fra	gments and gravel				
Predominant Soil Type:									
<u>Depth</u>		Туре о	f Bedrock & (Geological Form	ation				
[feet]		(disc	cuss rock prope	erties and feature	<i>s</i>)				
unknown	Miocene Series	and Citronelle Form	ation; predomi	nantly nearshore	marine deposits				
Underlying Predominan	t Aquifer Name:	Citronelle Aqiof	er						
TTT									
НҮ	DROGEOLO	DGY OF THE	SATURAT	ED IMPAC	TED ZONE				
Type of Aquifer?			Cont	fined 🛛	Unconfined				
Historical Range of Gro	oundwater Level Fl	uctuations [± ft bgs]:	+/- 54 cm	(1.76 ft)					
Historical Average Dep	th to Water Table/S	Static Water Table:	138 cm (4.	52 ft) below grou	ind surface				
Predominant Flow Dire	ction(s) (potention	etric surface):	west-north	west					
Hydraulic Gradient (i) [cm/cm]:		0.0114 cm	/cm					
Hydraulic Conductivity	(K) [cm/sec]:		7.06E-05 c	em/sec					
Hydraulic Conductivity	Test Method:								
Grain size/Sieve	analysis	Slug test			Pumping test				
Other (<i>specify an</i>	nd attach literature	;)							
Darcy Velocity (Ki) [cn	n/year]:		25.27 cm	n/yr					
Annual Precipitation (av	verage for last 30 y	ears):	61.89 in/	yr					
		Value/Range	Estimated	Measured	Method of Analysis				
Saturated Zone Dry Soi Density [g/cm ³]:	l Bulk	1.642	\boxtimes		ASTM D2937				
Total Porosity in the Sa [cm ³ /cm ³]:	turated Zone	0.392	\boxtimes		est from vadose zone samples				
Fractional Organic Carb the Saturated Zone [g-C		0.0280	\boxtimes		est from vadose zone samples				

VADOSE ZONE CHARACTERISTICS								
Value/Range Estimated Measured Method of Analysis								
Unsaturated Zone Dry Soil Bulk Density [g/cm ³]:	1.642		\boxtimes					
Total Soil Porosity in the Vadose Zone [cm ³ /cm ³]:	0.392		\boxtimes	Calc from ASTM D2937 and D854				

Volumetric Water Content [cm ³ /cm ³]:	0.224	\boxtimes	ASTM D2216
Fractional Organic Carbon Content [g-C/g-Soil]:	0.0280		ASTM D2974

ARBCA SUMMARY REP	PORT									FORM NO. 10	
UST Incident No(s).:	#93-02-15					Facility ID:		14587-097-012257			
Date form completed:	1 Septem	ber 200)5			For	n complet	ed by:	Andrew Wei	nberg	
GROUNDWATER USE											
ON-SITE USE	ON-SITE USE Current Future NOTES								ES		
	<u>YES</u>	<u>NO</u>	ACTIVE	INACTIVE	2	YES	<u>NO</u>	(Ju	stify choice fo	or future use)	
Potable Domestic Supply		\square					\boxtimes			he facility has city water	
Non-potable Domestic Supply		\bowtie					\boxtimes			om surface sources. Private ea typically tap the deeper	
Public/Municipal Supply		\bowtie					\boxtimes			hately 100 ft bgs rather than	
Industrial Supply		\bowtie					\boxtimes	the surficial groundwater. No future development of shallow			
Agriculture		\bowtie					\boxtimes	groundwater on site or nearby off-site is likely because of the availability of public water supplies and the poor production			
Other (explain in Notes)		\boxtimes					\boxtimes	potential of the su			
DETAILS OF PUBL	IC WELLS	S LOC		RADIUS			E SITE*				
Well number/designation:				<u>Well No. 1</u>			Well No. 2		Well No. 3	<u>Well No. 4</u>	
Well owner:											
Year constructed:											
Type of well (See choices above)	:										
Current use** (Active, Inactive, I	P&A, etc.):										
Total depth (ft):											
Uppermost screened interval (ft):											
Distance from the site (ft):											
Direction (downgradient, upgradient, etc., to the site):											
Within a Source Water Assessme	Within a Source Water Assessment Area I or II?										
				RECE	PTO	R SU	RVEY				
Nearest downgradient municipal	supply well:				mile						
Nearest downgradient domestic s	upply well: at or potential) f				000 ft						

ARBCA SUMM	IARY REPORT		FORM N
UST Incident No(s).:	#93-02-15	Facility ID:	14587-097-012257
Date form completed:	1 September 2005	Form completed	by: Andrew Weinberg

SURFACE WATER USE WITHIN 500 FOOT RADIUS OF SITE

D. 11

ON-SITE USE	Cur	rent	<u>Future</u>
	YES	<u>NO</u>	<u>YES</u> <u>NO</u>
Domestic Supply (potable) :		\square	
Domestic Supply (non-potable):		\square	
Public/Municipal Supply:		\square	
Industrial Supply:		\square	
Agriculture:		\square	
Recreation:		\square	
Other (explain in Notes):		\boxtimes	

NOTES (JUSTIFY CHOICE FOR FUTURE USE)

No surface water is present within 500 ft of the site. The nearest surface water is a drainage ditch about 600 ft southwest of the site that flows south and then east into Mobile Bay. This drainage system likely receives input from the surficial aquifer. It is highly unlikely that this drainage will ever be put to beneficial use.

WATER QUALITY DETERMINATION

Refer to Chapter 6.0 and Appendix C of the ARBCA Guidance Document.		
Is the receiving stream designated as intermittent or wetlands on the USGS topographic map or is the drainage area <5 sq. mile. If YES assume 7Q10 = 0; if NO, determine 7Q10.	Yes Yes	🗌 No
In Tier 1, use stream RBSLs listed in Table C-1. In Tier 2, estimate the allowab Appendix C and the Computational Software. Complete Form No. 20 for Tie evaluation after computing the stream RBSLs and SSTLs.		0 1
Is there a public water intake within one mile downstream of the site?	Tes Yes	No No
ADDITIONAL NOTES		

FORM NO. 12

UST Incident No(s).:

Date form completed:

#93-02-15

14587-097-012257

1 September 2005

Form completed by: Andrew Weinberg

ECOLOGICAL RECEPTORS AND HABITATS

Facility ID:

	<u>YES</u>	<u>NO</u>
Are there visible indications of stressed receptors or habitats on or near the site that may be a result of a chemical release?		
Is there a complete pathway at the site for an ecological impact beyond what is considered under the stream impacts evaluation?		
Other (explain in Notes):		
If the answer to any of the above questions is YES, contact the ADEM before proceeding any further.		

ADDITIONAL NOTES

ARBCA SUMM	ARY RE	PORT													FOR	M NO. 14
UST Incident No	(s): #93-0)2-15						Facility 1	D: 1458	7-097-0122	57					
Date Form Comp	leted: 01	-Sep-05						Form Co	mpleted B	y: Andre	w Weinber	g				
					ANALY	TICAL DA	ATA SUMN	ARY FOR	R SUBSUR	FACE SOI	L					
	• On-site	• On-site	• On-site	• On-site	• On-site	On-site	On-site	O On-site	On-site	• On-site	On-site	On-site				
	O Off-site	O Off-site	O Off-site	O Off-site	O Off-site	O Off-site	O Off-site	Off-site	O Off-site	O Off-site	O Off-site	O Off-site	ON-S	SITE	OFF-	-SITE
MW / SB No.	SB03-01	SB03-01	SB04-01	SB04-01									Arithmetic	Maximum	Arithmetic	Maximum
Sampling Date	Mar 2004	Mar 2004	Mar 2004	Mar 2004									Average	Maximum	Average	
Sample Depth* (ft)	2.5 - 3 ft	3 - 3.5	2.5 - 3 ft	3 - 3.5											, not to be used i valuation, use re	
														tions as per Ap	pendix B of the	
ORGANICS (all concentra			0.007	0.05									0.002		ment.	
Benzene	<.005	<.005	<0.007	<.005									0.003	0.004	NA	NA
Toluene	<.005	3.00E-03	0.001	<.005									0.002	0.003	NA	NA
Ethylbenzene Xylenes (Total)	<.005 <0.014	<.005	<0.007	<.005						_			0.003	0.004	NA NA	NA NA
MTBE	<.005	<.005	<0.007	<.010									0.003	0.001	NA	NA
Anthracene	<.005	<.005	<0.007	<.005									0.003 NA	0.004 NA	NA	NA
Benzo(a)anthracene													NA	NA	NA	NA
Benzo(a)pyrene													NA	NA	NA	NA
Benzo(b)fluoranthene													NA	NA	NA	NA
Benzo(g,h,i)perylene													NA	NA	NA	NA
Benzo(k)fluoranthene													NA	NA	NA	NA
Chrysene													NA	NA	NA	NA
Fluoranthene													NA	NA	NA	NA
Fluorene													NA	NA	NA	NA
Naphthalene	4.00E-04	<.005	<0.007	<.005									0.002	0.004	NA	NA
Phenanthrene													NA	NA	NA	NA
Pyrene													NA	NA	NA	NA
METALS (all concentration	ons must be in 1	mg/kg)								-			1			
Arsenic													NA	NA	NA	NA
Barium													NA	NA	NA	NA
Cadmium													NA	NA	NA	NA
Chromium VI													NA	NA	NA	NA
Lead													NA	NA	NA	NA
Zinc													NA	NA	NA	NA

NOTE: Provide any laboratory analytical datasheets not previously submitted to the ADEM. Non-detects must be entered as <-detection limit (for example, <0.005).

Maximum is the greater of (i) the detected values, and (ii) one-half of the detection limit.

* To avoid entries automatically changing into date format, use a single quote before entering the depths (for example, '1-2)

Page 1 of <u>1</u>

UST Incident No	o(s): #93-02-15						Facility ID:	14587-097-0	12257						
Date Form Com	pleted: 01-Sep-05						Form Comp	leted By: An	drew Weinber	g					
				ANALY	YTICAL DATA	A SUMMARY	Y FOR GROUNDWATER								
Monitoring Well #		MW-1	MW-2	MW-3	MW-4	<i>MW-5</i>	MW-6	MW-7	MW-8						
		On-site	On-site	☑ On-site	☑ On-site	On-site	☑ On-site	☑ On-site	✓ On-site	On-site	On-site	On-site	On-site		
	1 700	Off-site	Off-site	Off-site	Off-site	Off-site	Off-site	Off-site	Off-site	□ Off-site	□ Off-site	☐ Off-site	□ Off-sit		
Screen Interval (ft. b	,	3.4-13.4	3.4-13.4	3.3-13.3	3.3-13.3	1.8-11.8	2.3-12.3	5-15	4.8-14.8						
	average (ft. below TOC)	4.02	3.685	3.7775	2.49	4.57	4.8125	2.255	5.825						
nstallation Date		Oct 1992	Oct 1992	Oct 1992	Oct 1992	Oct 1992	Oct 1992	Oct 2004	Oct 2004						
Number of Measure		12	12	12	9	12	12	2	2						
Benzene	Historic no. of Detects	12 /12	0 /12	4 /12	1	1 /12	3 /12	0 /2	0 /2						
MCL = 0.005 mg/L	Historic Max (mg/L)	1.84	0.0025	0.01	0.00152	0.0014	0.06	0.000125	0.00315						
	Historic Min (mg/L)	0.0294	<0.00001	<0.00001	<.00001	<0.00001	<0.00001	<0.00025	<0.005						
	Recent Max (mg/L)	0.2	<0.001	<0.001	NA	<0.001	0.06	<0.00025	<0.005						
	Recent AAverage (mg/L)	0.139	0.000085	0.00025	NA	0.00025	0.041333333	0.000125	0.002825						
	Historic Trend	D	S	D	S	D	Ι	D	S						
Toluene	Historic no. of Detects	12-Dec	1 /12	10/12	1	0 /12	2 /12	0 /2	0 /2						
MCL = 1.0 mg/L	Historic Max (mg/L)	19	0.0025	0.0307	0.0019	0.025	0.0007	0.000125	0.00315						
1CL = 1.0 mg/L H	Historic Min (mg/L)	0.0077	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00025	<0.005						
	Recent Max (mg/L)	0.57	<0.005	0.00021	NA	<0.005	<0.005	<0.00025	<0.005						
	Recent AAverage (mg/L)	0.239	0.000085	0.000181667	NA	0.008416667	0.000461667	0.000125	0.002825						
	Historic Trend	S	S	S	S	S	S	S	S			On-site Off-site Off-site			
Ethylbenzene	Historic no. of Detects	9/12	0 /12	4 /12	1	0 /12	2 /12	0 /2	0 /2						
MCL = 0.7 mg/L	Historic Max (mg/L)	3.7	0.025	0.0085	0.00102	0.025	0.0015	0.000125	0.00315						
	Historic Min (mg/L)	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00025	<0.005						
	Recent Max (mg/L)	0.75	<0.05	0.0012	NA	<0.001	0.0015	<0.00025	<0.005						
	Recent AAverage (mg/L)	0.577	0.000085	0.000483333	NA	0.008416667	0.001008333	0.000125	0.002825						
	Historic Trend	S	S	D	S	S	S	S	S						
<i>Cylenes</i>	Historic no. of Detects	12/12	0 /12	8 /12	0	0 /12	3 /12	0 /2	0 /2						
ACL = 10 mg/L	Historic Max (mg/L)	11.4	0.05	0.0119	<0.00002	0.05	0.0105	0.0005	0.009						
	Historic Min (mg/L)	0.0191	<0.00002	<0.00002	<0.00001	<0.00002	<0.00002	<0.001	<0.015	005					
	Recent Max (mg/L)	1.33	<0.01	0.0018	NA	<0.01	0.00071	<0.0005	<0.015						
/lenes CL = 10 mg/L	Recent AAverage (mg/L)	0.95	0.000336667	0.001366667	NA	0.017	0.006133333	0.0005	0.00825						
	Historic Trend	S	S	S	S	S	S	S	S						

Recent refers to an approximate 1-2 year period. For the selection of the appropriate time period, refer to Appendix B and Section 6 of the guidance document.

For free product, enter the effective solubility of the COC (refer to Table B-1 in the guidance document) or the highest (historic or recent as the case may be) detected value, whichever is greater. This applies to historical and recent maxima.

AAverage = Arithmetic average

UST Incident No	o(s): #93-02-15						Facility ID:	14587-097-0	12257			
Date Form Com	pleted: 01-Sep-05						Form Comp	leted By: An	drew Weinber	g		
				ANALY	FICAL DATA	SUMMARY F	OR GROUND	WATER				
Monitoring Well #		MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8			
		On-site	On-site	On-site	On-site	On-site	On-site	On-site	On-site			
Screen Interval (ft. b	elow TOC)	3.4-13.4	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8			
Water Level-recent a	verage (ft. below TOC)	4.02	3.4-13.4	3.3-13.3	3.3-13.3	1.8-11.8	2.3-12.3	5-15	4.8-14.8			
Installation Date		Oct 1992	Oct 1992	Oct 1992	Oct 1992	Oct 1992	Oct 1992	Oct 2004	Oct 2004			
Number of Measurer	nents	12	12	12	9	12	12	2	2			
MTBE	Historic no. of Detects	0 /5	0 /5	0 /4	0 /4	0 /5	0 /4	0 /2	0 /2			
MCL = 0.02 mg/l	Historic Max (mg/L)	0.025	0.025	0.025	0.025	0.025	0.025	0.000125	0.00315			
	Historic Min (mg/L)	<0.02	<0.0001	<0.00025	<0.00025	<0.0001	<0.0001	<0.00025	<0.005			
	Recent Max (mg/L)	<0.005	<0.005	<0.005	NA	<0.005	<0.005	<0.005	<0.005			
	Recent AAverage (mg/L)	0.020833333	0.0001	0.00175	NA	0.008416667	0.008416667	0.000125	0.002825			
	Historic Trend	S	S	S	S	S	S	S	S			
Anthracene	Historic no. of Detects	0/5	0/5	0/5	0/2	0/5	0/5	0 /2	0 /2			
ACL = NA Hi	Historic Max (mg/L)	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
	Historic Min (mg/L)	<0.001	<0.001	<0.001	<0.0019	<0.001	<0.001	<0.001	<0.001			
	Recent Max (mg/L)	<0.001	<0.001	<0.001	NA	<0.001	<0.001	<0.001	<0.001			
	Recent AAverage (mg/L)	<0.001	<0.001	<0.001	NA	<0.001	<0.001	<0.001	<0.001			
	Historic Trend	S	S	S	S	S	S	S	S			
Benzo(a)anthracene	Historic no. of Detects	0/5	0/5	0/5	0/2	0/5	0/5	0 /2	0 /2			
ACL = NA	Historic Max (mg/L)	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
	Historic Min (mg/L)	<0.0002	<0.0002	<0.0002	<0.0031	<0.0002	<0.0002	<0.0002	<0.0002			
	Recent Max (mg/L)	<0.0002	<0.0002	<0.0002	NA	<0.0002	<0.0002	<0.0002	<0.0002			
	Recent AAverage (mg/L)	<0.0002	<0.0002	<0.0002	NA	<0.0002	<0.0002	<0.0002	<0.0002			
	Historic Trend	S	S	S	S	S	S	S	S			
enzo(a)pyrene	Historic no. of Detects	0/5	0/5	0/5	0/2	0/5	0/5	0 /2	0 /2			
MCL = 0.0002 mg/l	Historic Max (mg/L)	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
	Historic Min (mg/L)	<0.0002	<0.0002	<0.0002	<0.0025	<0.0002	<0.0002	<0.0002	<0.0002			
	Recent Max (mg/L)	<0.0002	<0.0002	<0.0002	NA	<0.0002	<0.0002	<0.0002	<0.0002			
	Recent AAverage (mg/L)	<0.0002	<0.0002	<0.0002	NA	<0.0002	<0.0002	<0.0002	<0.0002		Page 5	
	Historic Trend	S	S	S	S	S	S	S	S			

Recent refers to an approximate 1-2 year period. For the selection of the appropriate time period, refer to Appendix B and Section 6 of the guidance document.

UST Incident No	(s): #93-02-15						Facility ID:	14587-097-0	12257				
Date Form Com	oleted: 01-Sep-05						Form Comp	leted By: An	drew Weinber	g			
				ANALY	FICAL DATA	SUMMARY F	OR GROUND	WATER					
Monitoring Well #		MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8				
		On-site	On-site	On-site	On-site	On-site	On-site	On-site	On-site				
Screen Interval (ft. be	elow TOC)	3.4-13.4	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8				
Water Level-recent a	verage (ft. below TOC)	4.02	3.4-13.4	3.3-13.3	3.3-13.3	1.8-11.8	2.3-12.3	5-15	4.8-14.8				
nstallation Date		Oct 1992	Oct 1992	Oct 1992	Oct 1992	Oct 1992	Oct 1992	Oct 2004	Oct 2004				
Number of Measuren	nents	12	12	12	9	12	12	2	2				
Benzo(b)fluoranthene	Historic no. of Detects	1/5	0/5	0/5	0/2	0/5	0/5	0/2	0/2				
MCL = NA	Historic Max (mg/L)	0.00019	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002				
	Historic Min (mg/L)	<0.0002	<0.0002	<0.0002	<0.0025	<0.0002	<0.0002	<0.0002	<0.0002				
	Recent Max (mg/L)	0.00019	<0.0002	<0.0002	NA	<0.0002	<0.0002	<0.0002	<0.0002				
	Recent AAverage (mg/L)	0.00013	<0.0002	<0.0002	NA	<0.0002	<0.0002	<0.0002	<0.0002				
	Historic Trend	S	S	S	S	S	S	S	S				
Benzo(g,h,i)perylene	Historic no. of Detects	0/5	0/5	0/5	0/2	0/5	0/5	0/2	0/2				
	Historic Max (mg/L)	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.001	<0.001				
	Historic Min (mg/L)	<0.001	<0.001	<0.001	<0.0041	<0.001	<0.001	<0.001	<0.001				
	Recent Max (mg/L)	<0.001	<0.001	<0.001	NA	<0.001	<0.001	<0.001	<0.001				
	Recent AAverage (mg/L)	<0.001	<0.001	<0.001	NA	<0.001	<0.001	<0.001	<0.001				
	Historic Trend	S	S	S	S	S	S	S	S				
Benzo(k)fluoranthene	Historic no. of Detects	0/5	0/5	0/5	0/2	0/5	0/5	0/2	0/2				
ICL = NA	Historic Max (mg/L)	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.0005	<0.0005				
	Historic Min (mg/L)	<0.0005	<0.0005	<0.0005	<0.0025	<0.0005	<0.0005	<0.0005	<0.0005				
	Recent Max (mg/L)	<0.0005	<0.0005	<0.0005	NA	<0.0005	<0.0005	<0.0005	<0.0005				
	Recent AAverage (mg/L)	<0.0005	<0.0005	<0.0005	NA	<0.0005	<0.0005	<0.0005	<0.0005				
	Historic Trend	S	S	S	S	S	S	S	S				
hrysene	Historic no. of Detects	0/5	0/5	0/5	0/2	0/5	0/5	0/2	0/2				
ACL = NA	Historic Max (mg/L)	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.001	<0.001				
	Historic Min (mg/L)	<0.001	<0.001	<0.001	<0.0025	<0.001	<0.001	<0.001	<0.001				
	Recent Max (mg/L)	<0.001	<0.001	<0.001	NA	<0.001	<0.001	<0.001	<0.001		Image: Sector		
	Recent AAverage (mg/L)	<0.001	<0.001	<0.001	NA	<0.001	<0.001	<0.001	<0.001				
	Historic Trend	S	S	S	S	S	S	S	S				

Recent refers to an approximate 1-2 year period. For the selection of the appropriate time period, refer to Appendix B and Section 6 of the guidance document.

UST Incident N	lo(s): #93-02-15						Facility ID:	14587-097-0	12257			
Date Form Con	npleted: 01-Sep-05						Form Comp	leted By: An	drew Weinber	g		
				ANALY	FICAL DATA	SUMMARY F	OR GROUND	WATER				
Monitoring Well #		MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8			
		On-site	On-site	On-site	On-site	On-site	On-site	On-site	On-site			
Screen Interval (ft.	below TOC)	3.4-13.4	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8			
Water Level-recent	average (ft. below TOC)	4.02	3.4-13.4	3.3-13.3	3.3-13.3	1.8-11.8	2.3-12.3	5-15	4.8-14.8			
nstallation Date		Oct 1992	Oct 1992	Oct 1992	Oct 1992	Oct 1992	Oct 1992	Oct 2004	Oct 2004			
Number of Measure	ements	12	12	12	9	12	12	2	2			
Iuoranthene	Historic no. of Detects	1/5	0/5	0/5	0/2	0/5	1/5	0/2	0/2			
MCL = NA	Historic Max (mg/L)	0.0002	<0.005	<0.005	<0.005	<0.005	0.000076	<0.001	<0.001			
	Historic Min (mg/L)	<0.001	<0.001	<0.001	<0.0022	<0.001	<0.001	<0.001	<0.001			
	Recent Max (mg/L)	0.0002	<0.001	<0.001	NA	<0.001	0.000076	<0.001	<0.001			
	Recent AAverage (mg/L)	0.0004	<0.001	<0.001	NA	<0.001	0.000036	<0.001	<0.001			
	Historic Trend	S	S	S	S	S	S	S	S			
lourene	Historic no. of Detects	0/5	0/5	0/5	0/2	0/5	0/5	0/2	0/2			
ICL = NA	Historic Max (mg/L)	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.001	<0.001			
	Historic Min (mg/L)	<0.001	<0.001	<0.001	<0.0022	<0.001	<0.001	<0.001	<0.001			
	Recent Max (mg/L)	<0.001	<0.001	<0.001	NA	<0.001	<0.001	<0.001	<0.001			
	Recent AAverage (mg/L)	<0.001	<0.001	<0.001	NA	<0.001	<0.001	<0.001	<0.001			
	Historic Trend	S	3.4-13.4 3.3-13.3 3.3-13.3 1.8-11.8 2.3-12.3 Oct 1992 Oct 1992 Oct 1992 Oct 1992 Oct 1992 12 12 9 12 12 0/5 0/5 0/2 0/5 1/5 <0.005	S	S							
Japhthalene	Historic no. of Detects	5/5	0/5	0/5	0/2	0/5	3/5	0/2	0/2			
ACL = 0.02 mg/l	Historic Max (mg/L)	0.353	<0.005	<0.005	<0.005	<0.005	0.088	<0.001	<0.001			
	Historic Min (mg/L)	0.0647	<0.001	<0.001	<0.0022	<0.001	<0.0016	<0.001	<0.001			
	Recent Max (mg/L)	0.26	<0.001	<0.001	NA	<0.001	0.088	<0.001	<0.001			
	Recent AAverage (mg/L)	0.2	<0.001	<0.001	NA	<0.001	0.0657	<0.001	<0.001			
	Historic Trend	S	S	S	S	S	S	S	S			
henanthrene	Historic no. of Detects	1/5	0/5	0/5	0/2	0/5	1/5	0/2	0/2			
ACL = NA	Historic Max (mg/L)	0.00038	<0.005	<0.005	<0.005	<0.005	0.0002	<0.001	<0.001			
	Historic Min (mg/L)	<0.001	<0.001	<0.001	<0.0022	<0.001	<0.001	<0.001	<0.001			
	Recent Max (mg/L)	0.00038	<0.001	<0.001	NA	<0.001	0.0002	<0.001	<0.001			
	Recent AAverage (mg/L)	0.00079	<0.001	<0.001	NA	<0.001	0.0004	<0.001	<0.001			
	Historic Trend	S	S	S	S	S	S	S	S			

Recent refers to an approximate 1-2 year period. For the selection of the appropriate time period, refer to Appendix B and Section 6 of the guidance document.

UST Incident N	o(s): #93-02-15						Facility ID:	14587-097-0	12257			
Date Form Con	pleted: 01-Sep-05								drew Weinber	g		
	<u> </u>			ANALY'	TICAL DATA	SUMMARY F	FOR GROUND	WATER				
Monitoring Well #		MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8			
		On-site	On-site	On-site	On-site	On-site	On-site	On-site	On-site			
Screen Interval (ft. 1	below TOC)	3.4-13.4	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8			
Water Level-recent	average (ft. below TOC)	4.02	3.4-13.4	3.3-13.3	3.3-13.3	1.8-11.8	2.3-12.3	5-15	4.8-14.8			
Installation Date		Oct 1992	Oct 1992	Oct 1992	Oct 1992	Oct 1992	Oct 1992	Oct 2004	Oct 2004			
Number of Measure	ements	12	12	12	9	12	12	2	2			
Pyrene	Historic no. of Detects	0/5	0/5	0/5	0/2	0/5	0/5	0/2	0/2			
MCL = NA	Historic Max (mg/L)	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.001	<0.001			
	Historic Min (mg/L)	<0.001	<0.001	<0.001	<0.0022	<0.001	<0.001	<0.001	<0.001			
	Recent Max (mg/L)	<0.001	<0.001	<0.001	NA	<0.001	<0.001	<0.001	<0.001			
	Recent AAverage (mg/L)	<0.001	<0.001	<0.001	NA	<0.001	<0.001	<0.001	<0.001			
	Historic Trend	S	S	S	S	S	S	S	S			
Arsenic	Historic no. of Detects											
	Historic Max (mg/L)											
	Historic Min (mg/L)											
	Recent Max (mg/L)											
	Recent AAverage (mg/L)											
	Historic Trend											
Barium	Historic no. of Detects											
MCL = 2.0 mg/l	Historic Max (mg/L)											
	Historic Min (mg/L)											
	Recent Max (mg/L)											
	Recent AAverage (mg/L)											
	Historic Trend											
Cadmium	Historic no. of Detects											
MCL = 0.005 mg/l	Historic Max (mg/L)											
	Historic Min (mg/L)											
	Recent Max (mg/L)											
	Recent AAverage (mg/L)											
	Historic Trend											

Recent refers to an approximate 1-2 year period. For the selection of the appropriate time period, refer to Appendix B and Section 6 of the guidance document.

UST Incident N	o(s): #93-02-15						Facility ID:	14587-097-0	12257					
Date Form Com	pleted: 01-Sep-05						Form Completed By: Andrew Weinberg							
				ANALY'	FICAL DATA	SUMMARY F	OR GROUND	WATER						
Monitoring Well #		MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8					
		On-site	On-site	On-site	On-site	On-site	On-site	On-site	On-site					
creen Interval (ft. b	pelow TOC)	3.4-13.4	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8					
Vater Level-recent	average (ft. below TOC)	4.02	3.4-13.4	3.3-13.3	3.3-13.3	1.8-11.8	2.3-12.3	5-15	4.8-14.8					
nstallation Date		Oct 1992	Oct 1992	Oct 1992	Oct 1992	Oct 1992	Oct 1992	Oct 2004	Oct 2004					
Number of Measure	ments	12	12	12	9	12	12	2	2					
Chromium VI	Historic no. of Detects													
ICL = 0.1 mg/l	Historic Max (mg/L)													
	Historic Min (mg/L)													
	Recent Max (mg/L)													
	Recent AAverage (mg/L)													
	Historic Trend													
ead	Historic no. of Detects	4/5	4/5	5/5	2/2	5/5	5/5	2/2	1/2					
ACL = 0.015 mg/l	Historic Max (mg/L)	60	21	30	86	30	30	6	2.2					
	Historic Min (mg/L)	2	<5.0	4	40	2	1.4	3.7	<5.0					
	Recent Max (mg/L)	2.6	3	5.4	NA	4.4	3	6	2.2					
	Recent AAverage (mg/L)	2.5	3	4.8	NA	3.47	2.37	4.85	2.7					
	Historic Trend	S	S	S	D	S	S	S	S					
inc	Historic no. of Detects													
ICL = 2.0 mg/l	Historic Max (mg/L)													
	Historic Min (mg/L)													
	Recent Max (mg/L)													
	Recent AAverage (mg/L)													
	Historic Trend													

Recent refers to an approximate 1-2 year period. For the selection of the appropriate time period, refer to Appendix B and Section 6 of the guidance document.

UST Incident No(s): #93-02-15		Facility ID: 14587-097-01	12257	
Date Form Completed: 01-Sep-05			drew We	inberg
	SURE M	ODEL - ON-SITE RESIDENT (CHILD		
		CURRENT CONDITIONS		FUTURE CONDITIONS
ROUTES OF EXPOSURE	C/ NC*	JUSTIFICATION	C/ NC*	JUSTIFICATION
SURFICIAL SOIL				
Outdoor inhalation of vapors and particulate matter, ingestion, and dermal contact with surficial soil	NC	Site is covered with 8 inches of reinforced concrete over entire area of contamination. No residences on- site.	. NC	Current site use BY ALARNG is expected to continue indefinitely; no residences are planned on site.
SUBSURFACE SOIL				
Indoor inhalation of vapors	NC	No residences on site	NC	Current site use BY ALARNG is expected to continue indefinitely; no residences are planned on site.
Outdoor inhalation of vapors	NC	No residences on site	NC	Current site use BY ALARNG is expected to continue indefinitely; no residences are planned on site.
GROUNDWATER				
Indoor inhalation of vapors	NC	No residences on site	NC	Current site use BY ALARNG is expected to continue indefinitely; no residences are planned on site.
Outdoor inhalation of vapors	NC	No residences on site	NC	Current site use BY ALARNG is expected to continue indefinitely; no residences are planned on site.
Ingestion of groundwater from an on-site water supply well	NC	No residences on site	NC	Current site use BY ALARNG is expected to continue indefinitely; no residences are planned on site.

POSUR C/ NC*	Facility ID: 14587-097-012 Form Completed By: And E MODEL - ON-SITE COMMERCIAL CURRENT CONDITIONS JUSTIFICATION	lrew We WORKH	5
C/	E MODEL - ON-SITE COMMERCIAL CURRENT CONDITIONS	WORKE	ER
C/	CURRENT CONDITIONS		
			FUTURE CONDITIONS
	JUSTIFICATION		
		C/ NC*	JUSTIFICATION
NC	Site is covered with 8 inches of reinforced concrete over entire area of contamination.	NC	Concrete is expected to be maintained in area of heavy equipment traffic.
NC	No structures are present over the area of soil contamination	NC	No structures are likely to be constructed in the middle of the vehicle staging area where soil contamination is located.
С	Pathway is considered although concrete provides effective barrier to vapor migration.	С	Pathway is considered although concrete is expected to be maintained in area of heavy equipment traffic.
NC	No structures are present over the area of groundwater contamination	NC	No structures are likely to be built in the middle of the vehicle staging area where groundwater contamination is located.
С	Pathway is considered although concrete provides effective barrier to vapor migration.	С	Pathway is considered although concrete is expected to be maintained in area of heavy equipment traffic.
NC	No water supply wells are present on site.	NC	No water supply wells are likely to be constructed on site; city water supply is in use.
	C NC C	contamination C Pathway is considered although concrete provides effective barrier to vapor migration. NC No structures are present over the area of groundwater contamination C Pathway is considered although concrete provides effective barrier to vapor migration.	contamination contamination C Pathway is considered although concrete provides effective barrier to vapor migration. C NC No structures are present over the area of groundwater contamination NC C Pathway is considered although concrete provides effective barrier to vapor migration. C

ARBCA SUMMARY REPORT			FOR	RM NO.	17 - ON-SITE CONSTRUCTION WORKER
UST Incident No(s): #93-02-15			Facility ID: 14587-097-012	257	
Date Form Completed: 01-Sep-05			Form Completed By: And	rew We	inberg
SITE CONCEPTUAL EX	POSURE	MODEL -	ON-SITE CONSTRUCTION	WORK	ER
		CURRE	ENT CONDITIONS		FUTURE CONDITIONS
ROUTES OF EXPOSURE	C/ NC*		JUSTIFICATION	C/ NC*	JUSTIFICATION
SURFICIAL SOIL					
Outdoor inhalation of vapors and particulate matter, ingestion, and dermal contact with surficial soil	NC	The source a reinforced co	area is covered with 8 inches of oncrete	NC	Concrete is expected to be maintained in area of heavy equipment traffic.
SUBSURFACE SOIL					
Indoor inhalation of vapors	С		es are present on site, but construction ches or enclosed spaces could result in	С	No structures are planned on site, but construction work in trenches or enclosed spaces could result in exposure.
Outdoor inhalation of vapors	С	Potential con	nstruction work could result in exposure.	С	Potential construction work could result in exposure.
GROUNDWATER					
Indoor inhalation of vapors	С		es are present on site, but construction ches or enclosed spaces could result in	С	No structures are planned on site, but construction work in trenches or enclosed spaces could result in exposure.
Outdoor inhalation of vapors	С	Potential con	nstruction work could result in exposure.	С	Potential construction work could result in exposure.
Ingestion of groundwater from an on-site water supply well		1	NOT APP.	LIC	ABLE

* C : Complete Pathway NC : Not Complete

Page 3 of 6

				FORM NO. 17 - OFF-SITE RESIDEN
UST Incident No(s): #93-02-15		Facility ID: 14587-097-01	2257	
Date Form Completed: 01-Sep-05		Form Completed By: And	lrew We	inberg
SITE CONCEPTUAL EXPOS	URE M	ODEL - OFF-SITE RESIDENT (CHILD	AND AI	DULT)
		CURRENT CONDITIONS		FUTURE CONDITIONS
ROUTES OF EXPOSURE	C/ NC*	JUSTIFICATION	C/ NC*	JUSTIFICATION
SURFICIAL SOIL				
Outdoor inhalation of vapors and particulate matter, ingestion, and dermal contact with surficial soil	NC	Soil contamination is restricted to a small area on- site.	NC	Soil contamination is restricted to a small area on- site.
SUBSURFACE SOIL				
Indoor inhalation of vapors	NC	Soil contamination is restricted to a small area on- site.	NC	Soil contamination is restricted to a small area on- site.
Outdoor inhalation of vapors	NC	Soil contamination is restricted to a small area on- site.	NC	Soil contamination is restricted to a small area on site.
GROUNDWATER				
Indoor inhalation of vapors	NC	No contaminants have migrated off-site.	NC	No contaminants are likley to migrate to off-site residences because of rapid natural attenuation in groundwater.
Outdoor inhalation of vapors	NC	No contaminants have migrated off-site.	NC	No contaminants are likley to migrate to off-site residences because of rapid natural attenuation in groundwater.
Ingestion of groundwater from an off-site water supply well	NC	No contaminants have migrated off-site.	NC	No contaminants are likley to migrate to off-site residences because of rapid natural attenuation in groundwater.

ARBCA SUMMARY REPORT		FORM	NO. 17	- OFF-SITE COMMERCIAL WORKER
UST Incident No(s): #93-02-15		Facility ID: 14587-097-01	2257	
Date Form Completed: 01-Sep-05		Form Completed By: And	lrew We	inberg
SITE CONCEPTUAL EX	POSURE	MODEL - OFF-SITE COMMERCIAL	WORK	ER
		CURRENT CONDITIONS		FUTURE CONDITIONS
ROUTES OF EXPOSURE	C/ NC*	JUSTIFICATION	C/ NC*	JUSTIFICATION
SURFICIAL SOIL				
Outdoor inhalation of vapors and particulate matter, ingestion, and dermal contact with surficial soil	NC	Soil contamination is restricted to a small area on- site.	NC	Soil contamination is restricted to a small area on- site.
SUBSURFACE SOIL				
Indoor inhalation of vapors	NC	Soil contamination is restricted to a small area on- site.	NC	Soil contamination is restricted to a small area on- site.
Outdoor inhalation of vapors	NC	Soil contamination is restricted to a small area on- site.	NC	Soil contamination is restricted to a small area on- site.
GROUNDWATER				
Indoor inhalation of vapors	NC	No contaminants have migrated off-site.	NC	No contaminants are likley to migrate to off-site businesses because of rapid natural attenuation in groundwater.
Outdoor inhalation of vapors	NC	No contaminants have migrated off-site.	NC	No contaminants are likley to migrate to off-site businesses because of rapid natural attenuation in groundwater.
Ingestion of groundwater from an off-site water supply well	NC	No contaminants have migrated off-site.	NC	No contaminants are likley to migrate to off-site well. because of rapid natural attenuation in groundwater.
NOTE: * C : Complete Pathway NC : Not Complete				Page 5 of

ARBCA SUMMARY REPORT		FOR	M NO. 1	7 - OFF-SITE CONSTRUCTION WORKER
UST Incident No(s): #93-02-15		Facility ID: 14587-097-01	2257	
Date Form Completed: 01-Sep-05		Form Completed By: And	lrew We	inberg
SITE CONCEPTUAL EXI	POSURE	MODEL - OFF-SITE CONSTRUCTION	N WORK	XER
		CURRENT CONDITIONS		FUTURE CONDITIONS
ROUTES OF EXPOSURE	C/ NC*	JUSTIFICATION	C/ NC*	JUSTIFICATION
SURFICIAL SOIL				
Outdoor inhalation of vapors and particulate matter, ingestion, and dermal contact with surficial soil		Soil contamination is restricted to a small area on- site.		Soil contamination is restricted to a small area on- site.
SUBSURFACE SOIL			_	
Indoor inhalation of vapors		Soil contamination is restricted to a small area on- site.		Soil contamination is restricted to a small area on- site.
Outdoor inhalation of vapors		Soil contamination is restricted to a small area on- site.		Soil contamination is restricted to a small area on- site.
GROUNDWATER				
Indoor inhalation of vapors		No contaminants have migrated off-site.		No contaminants are likley to migrate off-site because of rapid natural attenuation in groundwater.
Outdoor inhalation of vapors		No contaminants have migrated off-site.		No contaminants are likley to migrate off-site because of rapid natural attenuation in groundwater.
Ingestion of groundwater from an off-site water supply well		NOT APP	LIC	ABLE

* C : Complete Pathway NC : Not Complete

Page 6 of 6

	Outdoor I Ingestion, Con	& Dermal	NC	Indoor In	nhalation	NC	Outdoor	Inhalation	С	Indoor In	nhalation	NC	Outdoor	Inhalation	С	Ingestion	of Water	N
Select the representative	Maximur Arithmeti			Maximun Arithmeti			Maximur Arithmet			Maximur	n ic Average		✓ Maximur Arithmet			-	nistoric maxi on from the w	
concentration (Rep.	Area-Wei		9e		ighted Average	e		eighted Average	re.		ighted Average	7e		ighted Average	7e		the Rep. Co.	
Conc.) for each medium.	Rep. Conc. [mg/kg]	Target Levels [mg/kg]	E/ NE	Rep. Conc. [mg/kg]	Target Levels [mg/kg]	E/ NE	Rep. Conc. [mg/kg]	Tanat	E/ NE	Rep. Conc. [mg/L]	Target Levels [mg/L]	E/ NE	Rep. Conc. [mg/L]	Conc. Target E/ Levels NE		Rep. Conc. [mg/L]	Target Levels [mg/L]] N
ORGANICS	[IIIg/Kg]	[iiig/kg]		[IIIg/Kg]	[IIIg/Kg]		[IIIg/Kg]	[IIIg/Kg]		[iiig/L]	[ing/L]		[iiig/L]	[mg/L]		[IIIg/L]	[IIIg/L]	
Benzene				3.50E-03			3.50E-03	4.29984302	NE				1.84E+00	382.401428	NE			Τ
Toluene				2.45E-03			2.45E-03	781.519111	NE				1.09E+01	526	NE			-
Ethylbenzene				3.50E-03			3.50E-03	360.214111	NE				3.70E+00	169	NE			-
Xylenes (Total)				1.05E-02			1.05E-02	450.838889	NE				1.14E+01	175	NE			-
MTBE				3.50E-03			3.50E-03	7881.2909	NE				2.50E-02	48000	NE			-
Anthracene													2.50E-03	0.0434	NE			-
Benzo(a)anthracene													2.50E-03	0.0094	NE			-
Benzo(a)pyrene													2.50E-03	0.00162	E			
Benzo(b)fluoranthene													2.50E-03	0.0015	E			
Benzo(g,h,i)perylene													2.50E-03	0.0007	E			1
Benzo(k)fluoranthene													2.50E-03	0.0008	E			-
Chrysene													2.50E-03	0.0016	Е			-
Fluoranthene													2.50E-03	0.206	NE			-
Flourene													2.50E-03	1.98	NE			-
Naphthalene				3.50E-03			3.50E-03	370.690422	NE				3.53E-01	31	NE			
Phenanthrene													2.50E-03	1	NE			
Pyrene													2.50E-03	0.135	NE			
METALS															1	4		
Arsenic																		
Barium																		
Cadmium																		
Chromium VI																		
Lead													8.60E-02	N/A		8.60E-02		
Zinc																		
NOTE: This comparative e E: Representative concentra NE: Representative concent	ation exceeds the	he calculated	allowable	e concentration		ted Form		and (ii) entero C: Complete NC: Not a C	Pathway	r	ncentrations.		N/A: Not a	pplicable			Page 3 of	ř
T1 Forms (Revision 1.0)							1	November 2	001									

Form Completed By: Andrew Weinberg Date Form Completed: 01-Sep-05 COMPARISON OF TIER 1 RBSLs WITH REPRESENTATIVE ON-SITE CONCENTRATIONS

SUBSURFACE SOIL

Facility ID: 14587-097-012257

FORM NO. 18 - ON-SITE COMMERCIAL WORKER

GROUNDWATER

ARBCA SUMMARY REPORT

#93-02-15

SURFICIAL SOIL

Outdoor Inhalation,

UST Incident No(s):

CHEMICALS OF

CONCERN

CHEMICALS OF CONCERN	SURI	FICIAL SOI	OIL SUBSURFACE SOIL GROUNDWATER															
CONCERN	Outdoor In Ingestion, Con	& Dermal	NC	Indoor Ir	nhalation	NC	Outdoor	Inhalation	С	Indoor In	nhalation	NC	Outdoor	Inhalation	С	Ingestion	of Water	NC
	Maximun	n		✓ Maximun	n		✓ Maximu	m		Maximur	m		Maximu	m		Use the	istoric maxir	тит
Select the representative	Arithmeti			Arithmeti			Arithmet			Arithmet			Arithmet			concentratio	n from the w	ater use
concentration (Rep.	Area-Wei	ighted Averag	ge	Area-Wei	ighted Avera	ge	Area-We	ighted Averag	<u>ge</u>	Area-We	ighted Averag	ge	✓ Area-We	ighted Averag	ge	well as	the Rep. Con	nc.
Conc.) for each medium.	Rep. Conc.	Target Levels	E/ NE	Rep. Conc.	Target Levels	E/ NE	Rep. Conc.	Target Levels	E/ NE	Rep. Conc.	Target Levels	E/ NE	Rep. Conc.	Target Levels	E/ NE	Rep. Conc.	Target Levels	E/ NE
	[mg/kg]	[mg/kg]	INE	[mg/kg]	[mg/kg]	ILL	[mg/kg]	[mg/kg]		[mg/L]	[mg/L]		[mg/L]	[mg/L]		[mg/L]	[mg/L]	INE
ORGANICS																-		
Benzene				3.50E-03			3.50E-03	4.29984302	NE				4.29E-02	382.401428	NE			
Toluene				2.45E-03			2.45E-03	781.519111	NE				2.70E-02	526	NE			
Ethylbenzene				3.50E-03			3.50E-03	360.214111	NE				6.47E-02	169	NE			
Xylenes (Total)				1.05E-02			1.05E-02	450.838889	NE				1.10E-01	175	NE			
MTBE				3.50E-03			3.50E-03	7881.2909	NE				8.05E-03	48000	NE			
Anthracene													5.00E-04	0.0434	NE			
Benzo(a)anthracene													1.00E-04	0.0094	NE			
Benzo(a)pyrene													1.00E-04	0.00162	NE			
Benzo(b)fluoranthene													1.00E-04	0.0015	NE			
Benzo(g,h,i)perylene													5.00E-04	0.0007	NE			
Benzo(k)fluoranthene													2.50E-04	0.0008	NE			
Chrysene													5.00E-04	0.0016	NE			
Fluoranthene													5.00E-04	0.206	NE			
Flourene													5.00E-04	1.98	NE			
Naphthalene				3.50E-03			3.50E-03	370.690422	NE				6.57E-02	31	NE			
Phenanthrene													5.00E-04	1	NE			
Pyrene													5.00E-04	0.135	NE			
METALS																		
Arsenic																		
Barium																		
Cadmium																		
Chromium VI																		
Lead													8.60E-02	N/A		8.60E-02		
Zinc																		
NOTE: This comparative ev	alustion is no	aformed outo	motioally	often the year h	nas (i) aammal	atad Earma	Nos. 12 to 17	and (ii) antan	ad tha nan		noontrotions						Page 3 of	4
E: Representative concentra NE: Representative concent	tion exceeds th	he calculated	allowable	e concentration	l.	eled Polini		C: Complete NC: Not a C	Pathway	7	incentrations.		N/A: Not a	pplicable			rage 5 OI	

Facility ID: 14587-097-012257

COMPARISON OF TIER 1 RBSLs WITH REPRESENTATIVE ON-SITE CONCENTRATIONS

SUBSURFACE SOIL

Form Completed By: Andrew Weinberg

FORM NO. 18 - ON-SITE COMMERCIAL WORKER

GROUNDWATER

ARBCA SUMMARY REPORT

Date Form Completed: 01-Sep-05

#93-02-15

SURFICIAL SOIL

UST Incident No(s):

CHEMICALS OF

UST Incident No(s):	#93-02-15	5					Facility l	D: 14587	-097-012	2257					
Date Form Completed	l: 01-Sep	-05					Form Co	mpleted By	: And	rew Weint	Derg				
Å			PARISO	N OF TIEF	R 1 RBSLs V	WITH R		1 1			TRATIONS				
CHEMICALS OF	CL	RFICIAL SOI					FACE SOIL						DWATER		
CONCERN	50.	KFICIAL SOI				SUBSUR	FACE SUIL					GROUN	DWATER		
		ution, Ingestion, al Contact	NC	Indoor I	Inhalation	С	Outdoor	Inhalation	С	Indoor l	Inhalation	С	Outdoor	Inhalation	С
	Maximu	m		✓ Maximu	ım		✓ Maximu	m		✓ Maximu	um		✓ Maximu	ım	
Select the representative		tic Average		1	etic Average			tic Average			etic Average			tic Average	
concentration (Rep. Conc.) for each medium.	Area-W	eighted Average		Area-W	eighted Average		Area-W	eighted Average		Area-W	eighted Average		Area-W	eighted Average	
each medium.	Rep. Conc.*	Target Levels	E/	Rep. Conc.	Target Levels	E/	Rep. Conc.	Target Levels	E/	Rep. Conc.	Target Levels	E/	Rep. Conc.	Target Levels	E/
	[mg/kg]	[mg/kg]	NE	[mg/kg]	[mg/kg]	NE	[mg/kg]	[mg/kg]	NE	[mg/L]	[mg/L]	NE	[mg/L]	[mg/L]	NE
RGANICS															
Benzene				3.50E-03	0.814075185	NE	3.50E-03	7.04867124	NE	1.84E+00	2.585042492	NE	1.84E+00	626.8651987	NE
Toluene				2.45E-03	95.08464761	NE	2.45E-03	781.5191111	NE	1.09E+01	149.9434409	NE	1.09E+01	526	NF
Ethylbenzene				3.50E-03	351.2848775	NE	3.50E-03	360.2141111	NE	3.70E+00	169	NE	3.70E+00	169	NF
Xylenes (Total)				1.05E-02	141.6857947	NE	1.05E-02	450.8388889	NE	1.14E+01	126.2733182	NE	1.14E+01	175	NE
MTBE				3.50E-03	910.2428762	NE	3.50E-03	7881.290897	NE	2.50E-02	7177.708621	NE	2.50E-02	48000	NE
Anthracene										2.50E-03	0.0434	NE	2.50E-03	0.0434	NE
Benzo(a)anthracene										2.50E-03	0.0094	NE	2.50E-03	0.0094	NE
Benzo(a)pyrene										2.50E-03	0.00162	Е	2.50E-03	0.00162	Ε
Benzo(b)fluoranthene										2.50E-03	0.0015	Е	2.50E-03	0.0015	Ε
Benzo(g,h,i)perylene										2.50E-03	0.0007	Е	2.50E-03	0.0007	Ε
Benzo(k)fluoranthene										2.50E-03	0.0008	Е	2.50E-03	0.0008	Е
Chrysene										2.50E-03	0.0016	Е	2.50E-03	0.0016	Ε
Fluoranthene										2.50E-03	0.206	NE	2.50E-03	0.206	NE
Flourene										2.50E-03	1.98	NE	2.50E-03	1.98	NE
Naphthalene				3.50E-03	126.7533653	NE	3.50E-03	370.6904222	NE	3.53E-01	14.23263302	NE	3.53E-01	31	NE
Phenanthrene										2.50E-03	1	NE	2.50E-03	1	NF
Pyrene										2.50E-03	0.135	NE	2.50E-03	0.135	NF
IETALS		•			-			•l			_			· · · · · · · · · · · · · · · · · · ·	
Arsenic															
Barium															
Cadmium															
Chromium VI															
Lead										2.60E-03	N/A		2.60E-03	N/A	
Zinc															

E: Representative concentration exceeds the calculated allowable concentration.

C: Complete Pathway NC: Not a Complete Pathway Page 4 of **N/A**: Not applicable

NE: Representative concentration does not exceed the calculated allowable concentration.

* The higher of the representative concentrations for surficial and subsurface soil should be entered in the representative concentration column. The target level is the target level for surficial soil.

UST Incident No(s):	#93-02-15	5					Facility l	D: 14587	-097-01	2257					
Date Form Completed	l: 01-Sep	-05					Form Co	mpleted By	: And	lrew Weint	oerg				
Å			PARISO	N OF TIEF	R 1 RBSLs V	WITH R		1 0			TRATIONS				
CHEMICALS OF	CL	RFICIAL SOI					FACE SOIL						DWATER		
CONCERN	50.	KFICIAL SOI				SUBSURI	ACE SOIL					GROUN	DWATEK		
		ution, Ingestion, al Contact	NC	Indoor I	nhalation	С	Outdoor	nhalation	С	Indoor 1	Inhalation	С	Outdoor	Inhalation	С
	Maximu	m		✓ Maximu	ım		✓ Maximu	m		Maximu	um		Maximu	ım	
Select the representative		tic Average			etic Average			tic Average			etic Average		1	etic Average	
concentration (Rep. Conc.) for each medium.		eighted Average			eighted Average			eighted Average	F (eighted Average			eighted Average	
cuen medium.	Rep. Conc.*	Target Levels	E/	Rep. Conc.	Target Levels	E/	Rep. Conc.	Target Levels	E/	Rep. Conc.	Target Levels	E/	Rep. Conc.	Target Levels	E/
	[mg/kg]	[mg/kg]	NE	[mg/kg]	[mg/kg]	NE	[mg/kg]	[mg/kg]	NE	[mg/L]	[mg/L]	NE	[mg/L]	[mg/L]	NE
RGANICS															
Benzene				3.50E-03	0.814075185	NE	3.50E-03	7.04867124	NE	4.29E-02	2.585042492	NE	4.29E-02	626.8651987	NE
Toluene				2.45E-03	95.08464761	NE	2.45E-03	781.5191111	NE	2.70E-02	149.9434409	NE	2.70E-02	526	NF
Ethylbenzene				3.50E-03	351.2848775	NE	3.50E-03	360.2141111	NE	6.47E-02	169	NE	6.47E-02	169	NF
Xylenes (Total)				1.05E-02	141.6857947	NE	1.05E-02	450.8388889	NE	1.10E-01	126.2733182	NE	1.10E-01	175	NF
MTBE				3.50E-03	910.2428762	NE	3.50E-03	7881.290897	NE	8.05E-03	7177.708621	NE	8.05E-03	48000	NF
Anthracene										5.00E-04	0.0434	NE	5.00E-04	0.0434	NF
Benzo(a)anthracene										1.00E-04	0.0094	NE	1.00E-04	0.0094	NF
Benzo(a)pyrene										1.00E-04	0.00162	NE	1.00E-04	0.00162	NF
Benzo(b)fluoranthene										1.00E-04	0.0015	NE	1.00E-04	0.0015	NF
Benzo(g,h,i)perylene										5.00E-04	0.0007	NE	5.00E-04	0.0007	NF
Benzo(k)fluoranthene										2.50E-04	0.0008	NE	2.50E-04	0.0008	NE
Chrysene										5.00E-04	0.0016	NE	5.00E-04	0.0016	NF
Fluoranthene										5.00E-04	0.206	NE	5.00E-04	0.206	NE
Flourene										5.00E-04	1.98	NE	5.00E-04	1.98	NE
Naphthalene				3.50E-03	126.7533653	NE	3.50E-03	370.6904222	NE	6.57E-02	14.23263302	NE	6.57E-02	31	NE
Phenanthrene										5.00E-04	1	NE	5.00E-04	1	NE
Pyrene										5.00E-04	0.135	NE	5.00E-04	0.135	NE
IETALS								I			<u> </u>			<u> </u>	
Arsenic															
Barium															
Cadmium															
Chromium VI															
Lead										2.60E-03	N/A		2.60E-03	N/A	
Zinc															

E: Representative concentration exceeds the calculated allowable concentration.

C: Complete Pathway

Page 4 of **N/A**: Not applicable

NE: Representative concentration does not exceed the calculated allowable concentration.

NC: Not a Complete Pathway

* The higher of the representative concentrations for surficial and subsurface soil should be entered in the representative concentration column. The target level is the target level for surficial soil.

UST Incident No(s):	#93-02-15						Facility II	D: 14587-093	7-01225	7								
Date Form Completed:	01-Sep-05						Form Con	npleted By:	Andrew	w Weinberg								
		Т	IER 1	GROUNDWA	ATER RESO	URCE I	PROTECTI	ON TARGET	CONC	ENTRATIO	NS							
Distance from source to the point	of exposure (POE):			500														
	COMPARISO	ON FOR SOURCE	SOIL		ISON FOR SOUF DUNDWATER	RCE			(COMPARISON F	OR COMPLIANC	E WELI	LS					
CHEMICALS OF CONCERN	Soil Source Rep.	Allowable Soil		GW Source Rep.	Allowable GW		CW Rep. Conc.	Allowable GW		CW Rep. Conc.	Allowable GW		CW Rep. Conc.	Allowable GW				
	Conc. ¹	Conc. ²	E/ NE	Conc. ³	Conc. at a POC 4	E/ NE	5	Conc. at a POC ⁶	E/ NE	5	Conc. at a POC ⁶	E/ NE	5	Conc. at a POC ⁶	E N			
	[mg/kg]	[mg/kg]		[mg/L]	[mg/L]		[mg/L]	[mg/L]		[mg/L]	[mg/L]		[mg/L]	[mg/L]				
COMPLIANCE WELL NO.					MW-1			MW-8			· · ·							
DISTANCE FROM SOURCE					10			200										
RECENT TREND					S			S										
ORGANICS																		
Benzene				0.139	0.317	NE	2.83E-03	0.0298	NE									
Toluene				0.239	63.4	NE	2.83E-03	5.97	NE									
Ethylbenzene				0.577	44.4	NE	2.83E-03	4.18	NE									
Xylenes (Total)				0.884	175	NE	8.25E-03	59.7	NE									
MTBE				0.0025	1.27	NE	2.83E-03	0.119	NE									
Anthracene				5.00E-04	0.0434	NE	5.00E-04	0.0434	NE									
Benzo(a)anthracene				1.00E-04	0.0094	NE	1.00E-04	0.00696	NE									
Benzo(a)pyrene				1.90E-04	0.00162	NE	1.00E-04	0.00119	NE									
Benzo(b)fluoranthene				5.00E-04	0.0015	NE	5.00E-04	0.0015	NE									
Benzo(g,h,i)perylene				2.50E-04	0.0007	NE	2.50E-04	0.0007	NE									
Benzo(k)fluoranthene				5.00E-04	0.0008	NE	5.00E-04	0.0008	NE									
Chrysene				2.00E-04	0.0016	NE	2.00E-04	0.0016	NE									
Fluoranthene				5.00E-04	0.206	NE	5.00E-04	0.206	NE									
Fluorene				3.80E-04	1.98	NE	5.00E-04	1.98	NE									
Naphthalene				0.2	1.27	NE	5.00E-04	0.119	NE									
Phenanthrene				5.00E-04	1	NE	5.00E-04	1	NE									
Pyrene				5.00E-04	0.135	NE	5.00E-04	0.135	NE									
IETALS						-												
Arsenic																		
Barium																		
Cadmium																		
Chromium VI				0.055.00	0.07		0.057	0.000-										
Lead				2.37E-03	0.95	NE	2.35E-03	0.0895	NE									
Zinc																		
OTE: Use the ARBCA Computer	•	calculate the allowa			GW source conc.,	and (iii) c	1		.1		ndwater at the POE.		Page 1 of	1				

5: The representative concentrations in the compliance well.

4: Allowable groundwater concentrations at the source protective of groundwater at the POE.6: Allowable groundwater concentrations at a point of compliance (POC) protective of a POE.NE: Representative concentration does not exceed the calculated allowable concentration.

E: Representative concentration exceeds the calculated allowable concentration.

Recommended Attachment: A map showing the location of the soil source, location of POE, and location of POCs.

ARBCA SUMMARY REPO	ORT								FORM NO. 21a				
UST Incident No(s): #93	3-02-15				Facility ID:	14587-097-012257	7						
Date Form Completed:	01-Sep-05				Form Complete	ed By: Andrew	Weinberg						
		TIER 1 O	N-SITE TARGE	F LEVELS FOR	INHALATION A	ND INGESTION							
NOTE: The RBSLs listed for each medium.	route of exposure are					ne Tier 1 on-site target levels are the minimum RBSLs of all routes of exposures wi							
	SURFIC	AL SOIL		SUBSURFACE SOII			GROUNDWATER						
CHEMICALS OF CONCERN	Outdoor Inhalation, Ingestion, & Dermal Contact	On-Site Tier 1 Target Levels	Indoor Inhalation	Outdoor Inhalation	On-Site Tier 1 Target Levels	Indoor Inhalation	Outdoor Inhalation	Ingestion of Water	On-Site Tier 1 Target Levels				
	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/L]	[mg/L]	[mg/L]	[mg/L]				
ORGANICS									•				
Benzene	NA	NA	0.814	4.300	0.814075185	2.585	382.401	NA	2.585042492				
Toluene	NA	NA	95.085	781.519	95.08464761	149.943	526.000	NA	149.9434409				
Ethylbenzene	NA	NA	351.285	360.214	351.2848775	169.000	169.000	NA	169				
Xylenes (Total)	NA	NA	141.686	450.839	141.6857947	126.273	175.000	NA	126.2733182				
MtBE	NA	NA	910.243	7881.291	910.2428762	7177.709	48000.000	NA	7177.708621				
Anthracene	NA	NA	NA	NA	NA	0.043	0.043	NA	0.0434				
Benzo(a)anthracene	NA	NA	NA	NA	NA	0.009	0.009	NA	0.0094				
Benzo(a)pyrene	NA	NA	NA	NA	NA	0.002	0.002	NA	0.00162				
Benzo(b)fluoranthene	NA	NA	NA	NA	NA	0.002	0.002	NA	0.0015				
Benzo(g,h,i)perylene	NA	NA	NA	NA	NA	0.001	0.001	NA	0.0007				
Benzo(k)fluoranthene	NA	NA	NA	NA	NA	0.001	0.001	NA	0.0008				
Chrysene	NA	NA	NA	NA	NA	0.002	0.002	NA	0.0016				
Fluoranthene	NA	NA	NA	NA	NA	0.206	0.206	NA	0.206				
Fluorene	NA	NA	NA	NA	NA	1.980	1.980	NA	1.98				
Naphthalene	NA	NA	126.753	370.690	126.7533653	14.233	31.000	NA	14.23263302				
Phenanthrene	NA	NA	NA	NA	NA	1.000	1.000	NA	1				
Pyrene	NA	NA	NA	NA	NA	0.135	0.135	NA	0.135				
METALS													
Arsenic	NA	NA	NA	NA	NA	NA	NA	NA	NA				
Barium	NA	NA	NA	NA	NA	NA	NA	NA	NA				
Cadmium	NA	NA	NA	NA	NA	NA	NA	NA	NA				
Chromium VI	NA	NA	NA	NA	NA	NA	NA	NA	NA				
Lead	NA	NA	NA	NA	NA	NA	NA	NA	NA				
Zinc	NA	NA	NA	NA	NA	NA	NA	NA	NA				

NOTE:

NA: Not Available

ARBCA SUMMA	RY REPORT		FORM No. 22							
UST Incident No:	#93-02-15	Facility ID:	14587-097-012257							
Date Form Completed:		Form Completed By:	Andrew Weinberg, P.G.							
	TIER 1 CONCLUSI	ONS AND RECOMMEN	NDATIONS							
1 Has the site been a	1 Has the site been adequately investigated and characterized?									
Vag A Dualimin am	Ver A Declining and the first of the second se									
	Yes. A Preliminary Investigation, a Secondary Investigation and an a Secondary Investigation Addendum have delineated the nature and extent of soil and groundwater contamination at the site.									
2 Has free product b										
2 mas mee product b										
Yes. A dual-phase v	vacuum extraction pilot test was conducted for an {	8-hour period in December	2004, recovering 5.6 lbs of hydrocarbons. This test							
demonstrated that o	nly residaul amounts of free-product were present	, that the product was not	readily extractable, and is immobile under normal conditions.							
3 Have threats to uti	lities been mitigated? (if applicable)									
Not applicable No	will the and properties the group offersted by soil or	anan duatan aantan in atia								
	<i>utilities are present in the area affected by soil or</i> ditions (i.e.odor, taste, etc) been properly mitiga		11.							
4 Have nuisance con	unions (i.e.odor, taste, etc) been property intiga	ateu: (ii applicable)								
Not applicable. No	nuisance conditions are present.									
	r plume stable or shrinking, based on concentra	tion trend plots?								
			more than 10 years. No contaminants were detected in							
			ets of measurements are available for the one downgradient well							
	taminant concentrations (MW-6).		, , , , , , , , , , , , , , , , , , ,							
	ological receptors been addressed? (if applicable	e)								
	ecological receptors are threatened or impacted.									
7 Are on-site soil and	d groundwater concentrations protective of curr	ent and reasonable futur	e on-site receptors?							
Tier 1 evaluation u	sing area-weighted average groundwater contami	nant concentrations from w	vithin the plume area demonstrates that on-site groundwater							
		· · · · · · · · · · · · · · · · · · ·	There is no current exposure to groundwater ingestion on-site							
-	opment of on-site groundwater for consumption is									
5		, ,								
Source area soil con	ncentrations are protective of on-site receptors. So	ource area soils have only	been analyzed for TPH. All TPH concentrations are below the							
			and west of the source area in March 2004; these samples help							
			ble from the source area, contaminant transport processes							
cannot be evaluated	l directly. However, because the source area is pay	ved with 8 inches of reinfor	ced concrete any vapor migration to on-site receptors is very							
limited. No building	gs are presently located in the plume area and no l	buildings are likely to be lo	cated in this area in the future, as it is an active vehicle storage							
area for the mainter	nance shop; consequently outdoor worker exposure	e is the only potentially								
complete exposure p	oathway.									

8	Are off-site soil and groundwater concentrations protective of current and reasonable future off-site receptors?
	Yes. No contaminants have migrated off-site and are not expected to in the future. No receptors are present within 1000 ft downgradient of the site at this time and no receptors are likely to be located downgradient of the site in the future.
9	Are soil and groundwater concentrations at the source protective of groundwater at a POE?
	Yes. Soil and groundwater concentrations at the source are protective of a POE assumed to be 500 ft downgradient of the source, based on Tier 1 dilution and attenuation factors. Although no BTEX data are available for source area soils, the source area soil and groundwater are assumed to be in equilibrium because of the age of the spill (>12 yrs) and the shallow depth to groundwater (< 5 ft). Consequently, the source area groundwater provides a basis for accurate prediction of potential future groundwater effects at the POE.
10	Are groundwater concentrations at the POC protective of groundwater at a POE?
11	Site contaminants are currently below detectable concentrations at the POC and are not expected to reach the POC. Natural attenuation of the plume is expected to be rapid downgradient of the paved area, where additional oxygen is carried into the surficial aquifer with recharge. Are soil and groundwater concentrations at the source protective of a stream?
	Yes. There is no stream or surface water within 1000 feet of the source.
12	Is compliance monitoring of groundwater recommended?
	Yes. Continued semi-annual monitoring of upgradient, source area, downgradient, and point of compliance wells is recommended to confirm trends in contaminant concentrations. Monitoring for a minimum of two years is recommended.
13	Is an interim remediation or Tier 1 reevaluation recommended?
	No additional efforts to remove free product from the source area are recommended. Such efforts are not likely to remove a significant mass of hydrocarbon, given the tight formation conditions, the high water table, the low residual hydrocarbon saturation, and the length of time since the release.
14	A Tier 1 reevaluation may be appropriate if increasing trends continue in downgradient well MW-6 or if contaminants are detected in the POC well. Is remediation to Tier 1 target levels recommended?
	No. Under current and likley future exposures scenarios, site conditions meet Tier 1 target levels without remediation.
15	Is the site recommended for NFA status?
	Yes. This site is recommended for NFA with post-closure monitoring, as described above.
16	Is a Tier 2 recommended?
	Yes. A Tier 2 evaluation is required because the depth to groundwater at this site is significantly less than the Tier 1 default value.
17	Other relevant information:

ARB	CA SUMMARY REPORT	FORM NO. 23
UST	1 Incident No(s): #93-02-15	Facility ID: 14587-097-012257
Dat	e Form Completed: 01-Sep-05	Form Completed By: Andrew Weinberg
	REFERENCES A	AND PROTOCOLS
R1	ADEM, 2001, ARBCA: ALABAMA RISK-BASED CORRECTIVE ACTION FO. Alabama Department of Environmental Management Groundwater Branch, Mon	R UNDERGROUND STORAGE TANKS GUIDANCE MANUAL REVISION 1.0, The ntgomery, AL
R2	ADEM. 1998. ARBCA: Alabama Risk-Based Corrective Action For Undergroun Management Groundwater Branch, Montgomery, AL.	nd Storage Tanks, Guidance Manual. The Alabama Department of Environmental
R3	Analytical Chemical Testing Laboratory, Inc., Jan. 1996., Groundwater Monitor, 29 - Pit #2.	ing Report, Fourth Quarter Sampling Event, Alabama National Guard Armory OMS #28 &
R4	Analytical Chemical Testing Laboratory, Inc., Jan. 1996., Groundwater Monitor 29 - Pit #2.	ing Report, Fourth Quarter Sampling Event, Alabama National Guard Armory OMS #28 &
R5	Bechtel-S Corp. 2005. Secondary Investigation Addendum, OMS #28, Pit 2. Ma	y 2005.
R 6	P.E. LaMoreaux & Associates, 1993. Underground Storage Tank Preliminary In	nvestigation Report, Alabama National Guard Armory OMS #28 & 29 - Pit #2.
R7	P.E. LaMoreaux & Associates, 1994. Underground Storage Tank Secondary Inv	vestigation Report, Alabama National Guard Armory OMS #28 & 29 - Pit #2.
R8	P.E. LaMoreaux & Associates, Feb. 1997. Letter report on groundwater samplin	ng to Mr. Tim Young, ADEM, RE: OMS 28 and 29, Pit #2.
R9	P.E. LaMoreaux & Associates, July 1996. Letter report on groundwater samplin	g to Mr. Tim Young, ADEM, RE: OMS 28 and 29, Pit #2.
R 10	P.E. LaMoreaux & Associates, Sept. 1997. Letter report on groundwater samplin	ng to Ms. Stephanie Carter, ADEM, RE: OMS 28 and 29, Pit #2.
R 11	Severn Trent Services, Nov. 2001. Fax laboratory data report to Mr. Craig Hollo	way, ALARNG, with analytical results for OMS #28 groundwater samples.
P1		re not documented for these events. Proceudres to minimize sample turbidity and remove nalyses also trend to be higher than for recent analyses and skew results for non-detected
P2	Representative concentration calculations reflect one-half the detection limit con	centration for non-detected analytes .
P3	Area-weighted average groundwater concentrations are calculated using the area above ISLs. Because wells are not located on a grid some polygons are irregular!	a of intersction between each well's polygon area and the area of the groundwater plume y shaped.
P4	Maximum soil concentrations are used because historical samples were only ana samples were collected.	lyzed for TPH and the soil source area was removed before the recent SI Addendum
		Page 1 of <u>1</u>

ALABAMA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT

GROUNDWATER BRANCH

1400 COLISEUM BOULEVARD, MONTGOMERY, ALABAMA 36130-1463 Ph.: (334) 270-5655 Fax: (334) 270-5631

> MAILING ADDRESS: P.O. BOX 301463 MONTGOMERY, ALABAMA 36130

ARBCA FOR USTs

TIER 2 REPORT FORMS

(Revision 1.0, July 2001)

(These are in addition to ARBCA Report Forms 1-23)

SITE NAME:	ALARNG OMS 28 Pit # 2
UST INCIDENT NO.:	#93-02-15
FACILITY ID:	14587-097-012257
DATE FORM COMPLETED:	1 September 2005
FORM COMPLETED BY:	Andrew Weinberg

•

	ARBCA REPORT FORMS	
	TABLE OF CONTENTS	
Indico Checi	the the report forms used in this ARBCA analysis. ∇ [∇] to select.	
	TIER 2 FORMS	
24.	Tier 2 Fate and Transport Parameters	
25.	Justification for Tier 2 Fate and Transport Parameters	
26.	Comparison of Tier 2 SSTLs with Representative Site Concentrations	
	On-site Receptors	
	On-site Resident Child	
	On-site Resident Adult	
	On-site Commercial Worker	
	On-site Construction Worker	
	Off-site Receptors	_
	Off-site Resident Child	
	Off-site Resident Adult	
	Off-site Commercial Worker	
	Off-site Construction Worker	
27.	Tier 2 Groundwater Resource Protection Target Concentrations	
28.	Tier 2 Stream Protection Target Concentrations	
29a.	Tier 2 On-site Target Levels for Inhalation and Ingestion	\checkmark
29b.	Tier 2 Off-site Target Levels for Inhalation and Ingestion	
30.	Tier 2 Conclusions and Recommendations	\checkmark
	ATTACHMENTS	
Addit	ional attachments used in this ARBCA analysis. Additional attachments, besides tho	se listed in Tier 1
Table	of Contents are to be listed here.	

RBCA SUMMARY REPORT					FORM NO. 2	
UST Incident No(s): #93-02-15		Facility II	D: 14587-09	97-012257		
Date Form Completed: 01-Sep-05			mpleted By:	Andrew Wei	nberg	
TIER 2 FATE AND TRANSPORT PARAMETERS						
Parameter	Symbol	Unit	Tier 1 Default Value	Tier 2 Value	Source	
SOIL PARAMETERS:						
Length of Soil Source Area Parallel to Wind Direction	W _a	cm	1500	460	Site-specific	
Depth to Subsurface Soil Sources	L _s	cm	30.48	30.48	Tier 1	
Lower Depth of Surficial Soil Zone	d	cm	30.48	30.48	Tier 1	
Thickness of Capillary Fringe	h _{cap}	cm	5	5	Tier 1	
Thickness of Vadose Zone	h _v	cm	295	125	Site-specific	
Dry Soil Bulk Density in the Vadose Zone	ρ_s	g/cm ³	1.8	1.642	Site-specific	
Fractional Organic Carbon Content in the Vadose Zone	foc	g-C/g-soil	0.01	0.028	Site-specific	
Total Soil Porosity in the Vadose Zone	θ_{T}	cm ³ /cm ³ -soil	0.3	0.392	Site-specific	
Volumetric Water Content in Vadose Zone	θ_{ws}	cm ³ /cm ³	0.1	0.224	Site-specific	
Volumetric Air Content in Vadose Zone	θ_{as}	cm ³ /cm ³	0.2	0.168	Site-specific	
Volumetric Water Content in Capillary Fringe	θ_{wcap}	cm ³ /cm ³	0.27	0.27	Tier 1	
Volumetric Air Content in Capillary Fringe	θ_{acap}	cm ³ /cm ³	0.03	0.122	Site-specific	
Volumetric Water Content in Foundation or Wall Cracks	θ_{wcrack}	cm ³ /cm ³	0.1	0.1	Tier 1	
Volumetric Air Content in Foundation/Wall Cracks	θ_{acrack}	cm ³ /cm ³	0.2	0.292	Site-specific	
GROUNDWATER PARAMETERS:						
Depth to Groundwater	L_{gw}	cm	300	138	Site-specific	
Width of GW Source Area Perpendicular to GW Flow Direction	Y	cm	1500	490	Site-specific	
Length of GW Source Area Parallel to GW Flow Direction	W	cm	1500	490	Site-specific	
Total Soil Porosity in the Saturated Zone	θ_{TS}	cm ³ /cm ³ -soil	0.3	0.392	Site-specific	
Dry Soil Bulk Density in the Saturated Zone	ρ _{ss}	g/cm ³	1.8	1.642	Site-specific	
Fractional Organic Carbon Content in the Saturated Zone	foc _s	g-C/g-soil	0.01	0.028	Site-specific	
Groundwater Mixing Zone Thickness	δ_{gw}	cm	200	54	Site-specific	
Hydraulic Conductivity in the Saturated Zone	К	cm/year	31536	2226	Site-specific	
Hydraulic Gradient in the Saturated Zone	i		0.005	0.0114	Site-specific	
Groundwater Darcy Velocity	U _{gw}	cm/year	157.68	25.3764	Calculated	
Infiltration Rate	Ι	cm/year	14.8	14.8	Tier 1	
STREAM PARAMETERS:						
Stream Flow Rate (Calculated per Appendix C)	Q _{sw}	ft ³ /day	Site-specific	NA	Site-specific	
AMBIENT AIR PARAMETERS:						
Breathing Zone Height	δ _a	cm	200	200	Tier 1	
Wind Speed within the Breathing Zone	U _a	cm/s	225	225	Tier 1	

ARBCA SUMMARY REPORT					FORM NO. 2		
UST Incident No(s): #93-02-15		Facility I	D: 14587-09	07-012257			
Date Form Completed: 01-Sep-05		Form Co	mpleted By:	Andrew Wei	nberg		
TIER 2 FATE AND TRANSPORT PARAMETERS							
Parameter	Symbol	Unit	Tier 1 Default Value	Tier 2 Value	Source		
ENCLOSED SPACE PARAMETERS:							
Enclosed Space Air Exchange Rate:							
Residential	ER	1/sec	0.00014	0.00014	Tier 1		
Commercial/Construction Worker	ER	1/sec	0.00023	0.00023	Tier 1		
Enclosed Space Volume/Infiltration Area Ratio:		1	1				
Residential	L _B	cm	200	200	Tier 1		
Commercial/Construction Worker	L _B	cm	300	300	Tier 1		
Enclosed Space Foundation or Wall Thickness:							
Residential	L _{crack}	cm	15	15	Tier 1		
Commercial/Construction Worker	L _{crack}	cm	15	15	Tier 1		
Areal Fraction of Cracks in Foundation/Walls:		1					
Residential	η	cm ² /cm ²	0.01	0.01	Tier 1		
Commercial/Construction Worker	η	cm ² /cm ²	0.01	0.01	Tier 1		
PARTICULATE EMISSION RATE:							
Residential and Commercial	Pe	g/cm ² -sec	6.90E-14	6.9E-14	Tier 1		
Construction Worker	Pe	g/cm ² -sec	6.90E-09	6.9E-09	Tier 1		
AVERAGING TIME FOR VAPOR FLUX:							
Resident Child	τ	sec	1.89E+08	189000000	Tier 1		
Resident Adult	τ	sec	9.46E+08	946000000	Tier 1		
Commercial Worker	τ	sec	7.88E+08	788000000	Tier 1		
Construction Worker	τ	sec	3.15E+07	31500000	Tier 1		
GROUNDWATER RESOURCE PROTECTION PARAMETER	RS:						
Distance from the Downgradient Edge of the Groundwater Source to the Point of Exposure	Хрое	ft	variable	500	Site-specific		
Distance from the Downgradient Edge of the Groundwater Source to the Point of Compliance	Xpoc	ft	variable	200	Site-specific		
STREAM PROTECTION PARAMETERS:							
Distance from the Downgradient Edge of the Groundwater Source to the Stream	Xs	ft	variable	NA	Site-specific		
Distance from the Downgradient Edge of the Groundwater Source to the Point of Compliance	Xspoc	ft	variable	NA	Site-specific		
				Page 2 of	2		

ARB	CA SUMMARY REPORT				FORM NO. 25				
UST	[Incident No(s): #93-02-15	Facility ID: 1	14587-09	07-012257					
Date	e Form Completed: 01-Sep-05	Form Complete	ed By:	Andrew Weinberg					
	JUSTIFICATION FOR TIER 2 FATE AND TRANSPORT PARAMETERS								
1.	Length of soil source area parallel to wind direction (W $_{a}) [\rm cm]$								
	The source width is the width of the UST excavation parallel to the predo	ominant wind directio	on.						
2.	Depth to subsurface soil sources (L _s) [cm]								
	The Tier 1 default value of 30.48 cm is used because speciated source are a depth of approximately 4 feet, contaminants are assumed to be present				nt in groundwater at				
3.	Lower depth of surficial soil zone (d) [cm]								
	Tier 1 Default								
4.	Thickness of capillary fringe (h _{cap}) [cm]								
	Tier 1 Default								
5.	Thickness of vadose zone (h _v) [cm]								
	Calculated from measured average depth to groundwater in site wells and	d default value for ca	pillary frii	nge thickness.					
6.	Dry soil bulk density in the vadose zone ($\rho_{\rm s})[g/cm^3]$								
	Measured average value from subsurface soil samples collected on-site.								
7.	Fractional organic carbon content in the vadose zone (foc) [g-C/g-soil]								
	Measured average value from subsurface soil samples collected on-site.								
				Pag	e 1 of 7				

ARB	CA SUMMARY REPORT				FORM NO. 25
UST	C Incident No(s): #93-02-15	Facility ID:	14587-0)97-012257	
Date	e Form Completed: 01-Sep-05	Form Compl	eted By:	Andrew Weinber	rg
	JUSTIFICATION FOR TIER 2 FAT	E AND TRANS	SPORT P	ARAMETERS	
8.	Total soil porosity in the vadose zone $(\theta_T) [cm^3\!/cm^3\text{-soil}]$				
	Measured average value from subsurface soil samples collected on-site.				
9.	Volumetric water content in the vadose zone $(\theta_{ws})~[cm^3/cm^3]$				
	Measured average value from subsurface soil samples collected on-site.				
10.	Volumetric air content in the vadose zone (θ_{as}) [cm ³ /cm ³]				
	Caclulated from total porosity and moisture content				
11.	Volumetric water content in the capillary fringe ($\theta_{wcap})~[cm^3/cm^3]$				
	Tier 1 default				
12.	Volumetric air content in the capillary fringe ($\theta_{acap}) [cm^3\!/cm^3]$				
	Caclulated from total porosity and moisture content using ARBCA Progr	ram			
13.	Volumetric water content in foundation or wall cracks (θ_{werack}) [cm ³ /c	m ³]			
	Tier 1 default				
14.	Volumetric air content in foundation or wall cracks (θ_{acrack}) [cm ³ /cm ³]	I			
	Caclulated from total porosity and moisture content using ARBCA Progr	ram			
					Page 2 of 7

ARB	CA SUMMARY REPORT		FORM NO. 25						
UST	T Incident No(s): #93-02-15	Facility ID: 1458	7-097-012257						
Dat	e Form Completed: 01-Sep-05	Form Completed B	y: Andrew Weinberg						
	JUSTIFICATION FOR TIER 2 FATE AND TRANSPORT PARAMETERS								
15.	Depth to groundwater (L _{gw}) [cm]								
	Measured average depth to groundwater in on-site wells.								
16.	Width of GW source area perpendicular to GW flow direction (Y) [cm	1]							
	The source width is the width of the UST ezcavation perpindicular to the associated piping.	groundwater flow directio	n; the leakwas found in the tank itself, not in the						
17.	Length of GW source area parallel to GW flow direction (W) [cm]								
	The source width is the width of the UST ezcavation parallel to the groun piping.	udwater flow direction; the	leakwas found in the tank itself, not in the associated						
18.	Total soil porosity in the saturated zone $(\theta_{TS})[cm^3\!/cm^3\!$ -soil]								
	Measured average value from subsurface soil samples collected on-site.								
19.	Dry soil bulk density in the saturated zone $(\rho_{ss})[g/cm^3]$								
	Measured average value from subsurface soil samples collected on-site.								
20.	Fractional organic carbon content in the saturated zone (foc $_{\rm s})$ [g-C/g-s	oil]							
	Measured average value from subsurface soil samples collected on-site.								
21.	Groundwater mixing zone thickness (δ_{gw}) [cm]								
	Average of masuered variation in water levels in on-site wells.								
			Page 3 of 7						

ARB	CA SUMMARY REPORT			FORM NO. 25					
UST	1 Incident No(s): #93-02-15	Facility ID: 14587-0	97-012257						
Dat	e Form Completed: 01-Sep-05	Form Completed By:	Andrew Weinberg						
	JUSTIFICATION FOR TIER 2 FATE AND TRANSPORT PARAMETERS								
22.	Hydraulic conductivity in the saturated zone (K) [cm/year]								
	Average of values calculated from slug tests in four on-site wells.								
23.	Hydraulic gradient in the saturated zone (i) []								
	Average gradient across site from MW-1 (source) to MW-8 (downgradien	nt POC)							
24.	Groundwater Darcy Velocity (Ugw) [cm/year]								
	Calculated from K and I, above.								
25.	Infiltration rate (I) [cm/year]								
	Tier 1 default.								
26.	Stream flow rate (Q_{sw}) [ft ³ /day]. If calculated using Bingham (1982, Ap	ppendix C), show calculations	and justify input values used.						
	NA								
27.	Breathing zone height (δ_a) [cm]								
	Tier 1 default.								
28.	Wind speed within the breathing zone (U_a) [cm/s]								
	Tier 1 default.								
			Dog	e 4 of 7					
			Fag						

ARB	CA SUMMARY REPORT			FORM NO. 25					
UST	T Incident No(s): #93-02-15	Facility ID: 14587-0	097-012257						
Dat	e Form Completed: 01-Sep-05	Form Completed By:	Andrew Weinberg						
	JUSTIFICATION FOR TIER 2 FATE AND TRANSPORT PARAMETERS								
29.	Enclosed space air exchange rate: residential (ER) [1/sec]								
	Tier 1 default.								
30.	Enclosed space air exchange rate: commercial/construction worker (E	R) [1/sec]							
	Tier 1 default.								
31.	Enclosed space volume-infiltration area ratio: residential (L $_{\rm B})$ [cm]								
	Tier 1 default.								
32.	Enclosed space volume-infiltration area ratio: commercial/constructio	n worker (L _B) [cm]							
	Tier 1 default.								
33.	Enclosed space foundation or wall thickness: residential $(L_{\mbox{\tiny crack}})$ [cm]								
	Tier 1 default.								
34.	Enclosed space foundation or wall thickness: commercial/construction	worker (L _{crack}) [cm]							
	Tier 1 default.								
35.	Areal fraction of cracks in foundation/walls: residential (η) [cm ² /cm ²]								
	Tier 1 default.								
			Pas	ge 5 of 7					

ARB	CA SUMMARY REPORT			FORM NO. 25
UST	f Incident No(s): #93-02-15	Facility ID: 14587-0	97-012257	
Date	e Form Completed: 01-Sep-05	Form Completed By:	Andrew Weinberg	
	JUSTIFICATION FOR TIER 2 FAT	E AND TRANSPORT P.	ARAMETERS	
36.	Areal fraction of cracks in foundation/walls: commercial/construction	worker (η) [cm ² /cm ²]		
	Tier 1 default.			
	-			
37.	Particulate emission rate: residential and commercial (Pe) [g/cm ² -sec]			
	Tier 1 default.			
38.	Particulate emission rate: construction worker (Pe) [g/cm ² -sec]			
	Tier 1 default.			
39.	Averaging time for vapor flux: resident child (τ) [sec]			
	Tier 1 default.			
40.	Averaging time for vapor flux: resident adult (τ) [sec]			
	Tier 1 default.			
41.	Averaging time for vapor flux: commercial worker (τ) [sec]			
	Tier 1 default.			
42.	Averaging time for vapor flux: construction worker (τ) [sec]			
	Tier 1 default.			
			Pag	ge 6 of 7

ARB	CA SUMMARY REPORT				FORM NO. 25
UST	f Incident No(s): #93-02-15	Facility ID:	14587-0	97-012257	
Dat	e Form Completed: 01-Sep-05	Form Comple	eted By:	Andrew Weinberg	
	JUSTIFICATION FOR TIER 2 FAT	E AND TRANS	SPORT P	ARAMETERS	
43.	Distance from the downgradient edge of the groundwater source to the	e point of exposure	e (Xpoe) [ft]	
	The maximum distance of 500 ft is used because there is no current or li	kely future POE do	owngradien	t of the site.	
44.	Distance from the downgradient edge of the groundwater source to the	e point of compliar	nce for pro	tection of POC (Xpoc) [ft]	
	The downgradient POC well, MW-8, is 200 feet downgradient from the set	ource area.			
45.	Distance from the downgradient edge of the groundwater source to the	e stream (Xs) [ft]			
	NA. No stream is present.				
46.	Distance from the downgradient edge of the groundwater source to the	e point of compliar	nce for stre	am protection (Xspoc) [ft]	
	NA. No stream is present.				
47.					
48.					
49.					
				n	ge 7 of 7
				Pag	

ARBCA SUMMAR	Y REPOR	Т										FO	RM NO. 2	6 - ON-SI	TE CO	OMMERC	IAL WO	RKER
UST Incident No(s	s): #93-0)2-15						Facility	ID:	14587-097	7-012257							
Date Form Compl	eted: 01	-Sep-05						Form C	omple	ted By:	Andrew V	Veinbe	rg					
		(COMP	ARISON	OF TIER	2 SST	Ls WITH	REPRES	ENTA	TIVE ON	-SITE CO	NCEN	TRATIO	NS				
CHEMICALS OF	SUR	FICIAL SOI	L		S	UBSURF	ACE SOIL						GRO	DUNDWATE	R			
CONCERN	Ingestion, Cor		NC		nhalation	NC		Inhalation	С		nhalation	NC		Inhalation	С	Ingestion		NC
Select the representative concentration (Rep.		m ic Average eighted Average	0P		m tic Average eighted Average	0P		m tic Average eighted Averag	De la		m ic Average sighted Average	7e		m tic Average eighted Average	7e	concentratio	historic maxir on from the wa s the Rep. Cor	vater use
Conc.) for each medium.	Rep. Conc.	Target Levels	E/ NE	Rep. Conc.	Target Levels	E /	Rep. Conc.	Target Levels	E/ NE	Rep. Conc.	Target Levels	E/ NE	Rep. Conc.	Target Levels	E/ NE	Rep. Conc.	Target Levels	E/ NE
	[mg/kg]	[mg/kg]	NE	[mg/kg]	[mg/kg]	NE	[mg/kg]	[mg/kg]	NE	[mg/L]	[mg/L]	NE	[mg/L]	[mg/L]	NE	[mg/L]	[mg/L]	NE
ORGANICS								1				1						
Benzene							0.0035	35.4376309	NE				0.0429	90.8199679	NE			
Toluene							0.00245	2148.3147	NE				0.027	526	NE			
Ethylbenzene							0.0035	993.967839	NE				0.0647	169	NE			
Xylenes (Total)							0.0105	1248.9151	NE				0.11	175	NE			
MTBE							0.0035	22787.5937	NE				0.00805	48000	NE			
Anthracene								28.5631324					0.0005	0.0434	NE			
Benzo(a)anthracene								94.2268825					0.0001	0.0094	NE			
Benzo(a)pyrene								43.954061					0.0001	0.00162	NE			
Benzo(b)fluoranthene								51.6602053					0.0001	0.0015	NE			
Benzo(g,h,i)perylene								30.9680955					0.0005	0.0007	NE			
Benzo(k)fluoranthene								27.5521091					0.00025	0.0008	NE			
Chrysene								17.8306189					0.0005	0.0016	NE			
Fluoranthene								283.236916					0.0005	0.206	NE			
Fluorene								427.713038					0.0005	1.98	NE			
Naphthalene							0.0035	1037.21179	NE				0.0657	31	NE			
Phenanthrene								394.937095					0.0005	1	NE			
Pyrene								257.058423					0.0005	0.135	NE			
METALS																		
Arsenic																		
Barium																		
Cadmium																		
Chromium VI																		
Lead																		
Zinc																		
						.		1	L			l			l			4

NOTE: The Rep. Conc. and the target levels are user-inputs. Use the ARBCA Computational Software for calculating the Tier 2 SSTLs.

E: Representative concentration exceeds Tier 2 SSTLs

NE: Representative concentration does not exceed Tier 2 SSTLs

C: Complete Pathway NC: Not a Complete Pathway NA: Not available

Page 3 of

UST Incident No(s):	#93-02-1	5					Facility	ID: 1458'	7-097-01	2257					
Date Form Complete	ed: 01-Se	p-05					Form Co	ompleted B	v: An	drew Wein	berg				
1		-	ARISON	N OF TIER	2 SSTLs V	VITH R		-			TRATION	3			
CHEMICALS OF	err	RFICIAL SOII					FACE SOIL						DWATER		
CONCERN	50	KFICIAL SUI	_			SUBSURF	ACE SUIL					GROUN	DWATEK		
		Inhalation, Dermal Contact	NC	Indoor I	nhalation	С	Outdoor	Inhalation	С	Indoor I	nhalation	С	Outdoor	Inhalation	С
	✓ Maximum	1		✓ Maximum			✓ Maximun	1		Maximum	1		Maximun		
Select the representative	Arithmetic	U U		Arithmetic				c Average		Arithmeti	0			c Average	
concentration (Rep. Conc.) for each medium.		ghted Average	E/		ghted Average	T/	_	ghted Average	E (ghted Average	E/		ighted Average	F (
each mearann	Rep. Conc.*	Target Levels	E/	Rep. Conc.	Target Levels	E/	Rep. Conc.	Target Levels	E/	Rep. Conc.	Target Levels	E/	Rep. Conc.	Target Levels	E/
	[mg/kg]	[mg/kg]	NE	[mg/kg]	[mg/kg]	NE	[mg/kg]	[mg/kg]	NE	[mg/L]	[mg/L]	NE	[mg/L]	[mg/L]	NE
ORGANICS															
Benzene				0.0035	1.178486908	NE	0.0035	58.09240216	NE	0.0429	0.896044525	NE	0.0429	148.8798759	NE
Toluene				0.00245	139.9185688	NE	0.00245	2148.314699	NE	0.027	49.16777775	NE	0.027	526	NE
Ethylbenzene				0.0035	518.8949657	NE	0.0035	993.9678392	NE	0.0647	126.6289002	NE	0.0647	169	NE
Xylenes (Total)				0.0105	210.106122	NE	0.0105	1248.915104	NE	0.11	42.25142809	NE	0.11	175	NE
MTBE				0.0035	1297.834867	NE	0.0035	22787.59367	NE	0.00805	3905.76318	NE	0.00805	48000	NE
Anthracene					28.56313244			28.56313244		0.0005	0.0434	NE	0.0005	0.0434	NE
Benzo(a)anthracene					94.22688247			94.22688247		0.0001	0.0094	NE	0.0001	0.0094	NE
Benzo(a)pyrene					43.95406101			43.95406101		0.0001	0.00162	NE	0.0001	0.00162	NE
Benzo(b)fluoranthene					51.66020533			51.66020533		0.0001	0.0015	NE	0.0001	0.0015	NE
Benzo(g,h,i)perylene					30.96809549			30.96809549		0.0005	0.0007	NE	0.0005	0.0007	NE
Benzo(k)fluoranthene					27.55210914			27.55210914		0.00025	0.0008	NE	0.00025	0.0008	NE
Chrysene					17.83061891			17.83061891		0.0005	0.0016	NE	0.0005	0.0016	NE
Fluoranthene					283.2369162			283.2369162		0.0005	0.206	NE	0.0005	0.206	NE
Fluorene					427.7130384			427.7130384		0.0005	1.98	NE	0.0005	1.98	NE
Naphthalene				0.0035	189.6038676	NE	0.0035	1037.21179	NE	0.0657	8.080424484	NE	0.0657	31	NE
Phenanthrene					394.9370953			394.9370953		0.0005	1	NE	0.0005	1	NE
Pyrene					257.0584228			257.0584228		0.0005	0.135	NE	0.0005	0.135	NE
METALS															
Arsenic															
Barium															
Cadmium															
Chromium VI															
Lead															
Zinc															

NOTE: The Rep. Conc. and the target levels are user-inputs. Use the ARBCA Computational Software for calculating the Tier 2 SSTLs.

E: Representative concentration exceeds Tier 2 SSTLs

C: Complete Pathway NC: Not a Complete Pathway Page 4 of ______ NA: Not available

NE: Representative concentration does not exceed Tier 2 SSTLs

* The higher of the representative concentrations for surficial and subsurface soil should be entered in the representative concentration column. The target level is the target level for surficial soil.

UST Incident No(s): #93	-02-15						Facility ID	: 14587-097	7-01225	7								
Date Form Completed: 01-Sep-05							Form Completed By: Andrew Weinberg											
		TIF	ER 2 GI	ROUNDWAT	TER RESOUR	RCE PF	ROTECTION	TARGET CO	ONCE	NTRATIONS	5							
Distance from source to the point of e	exposure (POE):																	
	COMPARISO	N FOR SOURCE	E SOIL		ISON FOR SOUF	RCE			(COMPARISON F	OR COMPLIANC	E WELI	.s					
	0.10 D	411 11 0 1			OUNDWATER		CWD C	A11 11 CW		CW D C	A11 11 CW		CW P C	Conc. Allowable GW				
CHEMICALS OF CONCERN	Soil Source Rep. 1	Allowable Soil 2	Е/	GW Source Rep.	4	E /	CW Rep. Conc. 5	Allowable GW 6	Е/	CW Rep. Conc. 5	6	E/	CW Rep. Conc. 5	6	F			
	Conc.	Conc. ²	NE	Conc.	Conc. at a POC	NE		Conc. at a POC	NE		Conc. at a POC	NE		Conc. at a POC	Ν			
	[mg/kg]	[mg/kg]		[mg/L]	[mg/L] MW-1		[mg/L]	[mg/L]		[mg/L]	[mg/L]		[mg/L]	[mg/L]				
COMPLIANCE WELL NO.					MW-1 10			<u>MW-8</u> 200										
RECENT TREND					10 S			200 S										
DRGANICS					5			3										
Benzene				0.139	3.56	NE	0.00283	0.0311	NE									
Toluene				0.139	526	NE	0.00283	6.22	NE									
Ethylbenzene				0.239	169	NE	0.00283	4.36	NE									
Xylenes (Total)				0.884	175	NE	0.00825	62.2	NE									
MTBE				0.0025	14.3	NE	0.00283	0.124	NE									
Anthracene				0.0005	0.0434	NE	0.0005	0.0434	NE									
Benzo(a)anthracene				0.0001	0.0094	NE	0.0001	0.00726	NE									
Benzo(a)pyrene				0.00019	0.00162	NE	0.0001	0.00124	NE				-					
Benzo(b)fluoranthene				0.0005	0.0015	NE	0.0005	0.0015	NE									
Benzo(g,h,i)perylene				0.00025	0.0007	NE	0.00025	0.0007	NE									
Benzo(k)fluoranthene				0.0005	0.0008	NE	0.0005	0.0008	NE									
Chrysene				0.0002	0.0016	NE	0.0002	0.0016	NE									
Fluoranthene				0.0005	0.206	NE	0.0005	0.206	NE									
Fluorene				0.00038	1.98	NE	0.0005	1.98	NE									
Naphthalene				0.2	14.3	NE	0.0005	0.124	NE									
Phenanthrene				0.0005	1	NE	0.0005	1	NE									
Pyrene				0.0005	0.135	NE	0.0005	0.135	NE									
METALS																		
Arsenic																		
Barium																		
Cadmium																		
Chromium VI																		
Lead				0.00237	10.7	NE	0.00235	0.0933	NE									
Zinc																		
OTE: Use the ARBCA Computation	al Software to calcula	te the allowable (i)) soil sour	ce conc., (ii) GW s	source conc., and (i	ii) complia	ance well conc.						Page 1 of					

5: Representative concentrations in the compliance well.

4: Allowable groundwater concentrations at the source protective of groundwater at the POE.
6: Allowable groundwater concentrations at a point of compliance (POC) protective of a POE.
NE: Representative concentration does not exceed allowable concentration.

E: Representative concentration exceeds allowable concentration. Recommended Attachment: A map showing the location(s) of the soil source(s), location of POE, and location(s) of POC.

ARBCA SUMMARY REP	ORT								FORM NO. 29			
UST Incident No(s): #9	3-02-15				Facility ID:	14587-097-012257						
Date Form Completed:	01-Sep-05				Form Complet	ed By: Andrew	Weinberg					
		TIER 2 O	N-SITE TARGE	FLEVELS FOR	INHALATION A	ND INGESTION						
NOTE : The SSTLs listed for each medium.	route of exposure are	the minimum SSTLs	for all the receptors fo	r that particular route	of exposure. The Tier	2 on-site target levels	are the minimum SST	Ls of all routes of e	posures within each			
	SURFIC	IAL SOIL		SUBSURFACE SOIL	_		GROUNDWATER	GROUNDWATER				
CHEMICALS OF CONCERN	Outdoor Inhalation, Ingestion, & Dermal Contact	On-Site Tier 2 Target Levels	Indoor Inhalation	Outdoor Inhalation	On-Site Tier 2 Target Levels	Indoor Inhalation	Outdoor Inhalation	Ingestion of Water	On-Site Tier 2 Target Levels			
	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/L]	[mg/L]	[mg/L]	[mg/L]			
ORGANICS	•											
Benzene	NA	NA	1.178486908	35.43763095	1.178486908	0.896044525	90.81996789	NA	0.896044525			
Toluene	NA	NA	139.9185688	2148.314699	139.9185688	49.16777775	526	NA	49.16777775			
Ethylbenzene	NA	NA	518.8949657	993.9678392	518.8949657	126.6289002	169	NA	126.6289002			
Xylenes (Total)	NA	NA	210.106122	1248.915104	210.106122	42.25142809	175	NA	42.25142809			
MtBE	NA	NA	1297.834867	22787.59367	1297.834867	3905.76318	48000	NA	3905.76318			
Anthracene	NA	NA	28.56313244	28.56313244	28.56313244	0.0434	0.0434	NA	0.0434			
Benzo(a)anthracene	NA	NA	94.22688247	94.22688247	94.22688247	0.0094	0.0094	NA	0.0094			
Benzo(a)pyrene	NA	NA	43.95406101	43.95406101	43.95406101	0.00162	0.00162	NA	0.00162			
Benzo(b)fluoranthene	NA	NA	51.66020533	51.66020533	51.66020533	0.0015	0.0015	NA	0.0015			
Benzo(g,h,i)perylene	NA	NA	30.96809549	30.96809549	30.96809549	0.0007	0.0007	NA	0.0007			
Benzo(k)fluoranthene	NA	NA	27.55210914	27.55210914	27.55210914	0.0008	0.0008	NA	0.0008			
Chrysene	NA	NA	17.83061891	17.83061891	17.83061891	0.0016	0.0016	NA	0.0016			
Fluoranthene	NA	NA	283.2369162	283.2369162	283.2369162	0.206	0.206	NA	0.206			
Fluorene	NA	NA	427.7130384	427.7130384	427.7130384	1.98	1.98	NA	1.98			
Naphthalene	NA	NA	189.6038676	1037.21179	189.6038676	8.080424484	31	NA	8.080424484			
Phenanthrene	NA	NA	394.9370953	394.9370953	394.9370953	1	1	NA	1			
Pyrene	NA	NA	257.0584228	257.0584228	257.0584228	0.135	0.135	NA	0.135			
METALS												
Arsenic	NA	NA	NA	NA	NA	NA	NA	NA	NA			
Barium	NA	NA	NA	NA	NA	NA	NA	NA	NA			
Cadmium	NA	NA	NA	NA	NA	NA	NA	NA	NA			
Chromium VI	NA	NA	NA	NA	NA	NA	NA	NA	NA			
Lead	NA	NA	NA	NA	NA	NA	NA	NA	NA			
Zinc	NA	NA	NA	NA	NA	NA	NA	NA	NA			

NOTE:

NA: Not Available

ARBCA SUMMA	RY REPORT		FORM No. 30
UST Incident No:	#93-02-15	Facility ID:	14587-097-012257
Date Form Completed		Form Completed By:	Andrew Weinberg, P.G.
	TIER 2 C	CONCLUSIONS AND RECOMMENDA	TIONS
¹ Are on-site soil	and groundwater concentrations protec	ctive of current and reasonable future o	n-site receptors?
Tier 2 evaluatio are protective for	n using area-weighted average groundwate	er contaminant concentrations from within ingestion of groundwater. There is no cur	the plume area demonstrates that on-site groundwater condition rent exposure to groundwater ingestion on-site and no future
mg/kg correctiv the extent of soi evaluated direct buildings are pr	e action level (CAL). Samples for BTEX of l contamination. Because no analyses for in ly. However, because the source area is par esently located in the plume area and no but the maintenance shop; consequently outdo	& MTBE were collected just south and we ndividual compounds are available from the ved with 8 inches of reinforced concrete a uildings are likely to be located in this area	
	act been removed?		
Yes. A dual-ph that only residan	ase vacuum extraction pilot test was condu		04, recovering 5.6 lbs of hydrocarbons. This test demonstrated , and is immobile under normal conditions.
Not applicable.	No utilities are present in the area affected	d by soil or groundwater contamination.	
4 Have nuisance	conditions (i.e.odor, taste, etc) been prop	perly mitigated? (if applicable)	
	No nuisance conditions are present.		
5 Have threats to	ecological receptors been addressed? (i	f applicable)	
Not applicable.	No ecological receptors are threatened or	impacted.	
6 Are off-site soi	and groundwater concentrations protect	ctive of current and reasonable future o	ff-site receptors?
no receptors are	likely to be located downgradient of the si	ite in the future.	present within 1000 ft downgradient of the site at this time and
7 Are source soil	concentrations protective of groundwat	er at a POE?	
attenuation factor age of the spill potential future	ors. Although no BTEX data are available (>12 yrs) and the shallow depth to groundw groundwater effects at the POE.	for source area soils, the source area soil a water (< 5 ft). Consequently, the source ar	t downgradient of the source, based on Tier 1 dilution and and groundwater are assumed to be in equilibrium because of th ea groundwater provides a basis for accurate prediction of
8 Are source gro	undwater concentrations protective of g	roundwater at a POE?	
The current plus		noval, extends less than 150 ft from the so	adient of the source, based on Tier 2 fate and transport factors. urce. While the extent of the plume has increased slightly since al decline.
	and groundwater concentrations protec		
	st surface water is a drainage ditch more th npact this surface water body.	aan 600 ft west (generally downgradient of	the site). No contaminants from this site have impacted or are
	mmended for NFA status?		
Yes. This site i	s recommended for NFA with post-closure	monitoring, as described below.	
	nonitoring of groundwater recommende		
	semi-annual monitoring of upgradient, so Monitoring for a minimum of two years is		pliance wells is recommended to confirm trends in contaminant
	emediation or reevaluation recommende		
	forts to remove free product from the sour ion conditions, the high water table, the low		e not likely to remove a significant mass of hydrocarbon, given length of time since the release.
A Tier 2 reevalu	ation may be appropriate if increasing tren	nds continue in downgradient well MW-6	or if contaminants are detected in the POC well.

RBCA SUMMARY REPORT	FORM No. 30 (Cont)
3 Is remediation to Tier 2 target levels recommended?	
No. Under current and likley future exposures scenarios, site conditions meet Tier 2 target levels without remediation	on.
Is a Tier 3 evaluation recommended?	
No. All current and likely future exposure pathways meet Tier 2 RBSLs using area-weighted average concentration The only pathway that fails to meet RBSLs is for direct ingestion of on-site groundwater within the plume area. The reasonable future scenarios for this site.	
5 Dissussion:	
Tier 2 evaluation of the ALRANG OMS 28 Pit #2 site yields the same conclusions as Tier 1 evaluation of the site - screening levels calculated with area-weighted average contaminant concentrations is ingestion of groundwater. Ti 1 levels. Although the depth to groundwater at this site is very shallow, the relatively small source area and the relatively transfer from the subsurface soil to potential receptors on site.	ier 2 SSTLs are actually somewhat higher than
Forms 26 compare on-site maximum and area-weighted average contaminant concentrations from the plume area to SSTLs for all complete exposure pathways. Plume area-weighted average concentrations exceed SSTLs for direct naphthalene are exceeded, but this pathway is extremely unlikely.	6
These Tier 2 SSTLs are conservative; the Tier 2 SSTLs are calculated with the Tier 1 default value for foundation concorrect paving covering the plume area is substantially less than the Tier 1 default and would further reduce the point on structure is present over the current footprint of the plume, so no current indoor inhalation risk is present. Future structure over the area of contamination is highly unlikely. No current or future exposure pathways indicate any risk Direct ingestion of contaminated groundwater is also not considered a reasonable current or future exposure pathway supplies and the lack of off-site contamination.	stential exposure to on-site receptors. Furthermore e construction of any residential or occupational k via outdoor inhalation of site contaminants.
Consequently, OMS 28 Pit #2 is recommended for closure under Tier 2 with monitored natural attenuation. Continu area, downgradient, and point of compliance wells is recommended to confirm trends in contaminant concentrations recommended.	0 10

Image courtesy of Alabama Geological Survey http://www.gsa.state.al.us/gsa/gis/geologydetails.html

Draft ARBCA Report ALARNG OMS #28

Attachment 12a. Time Versus Concentration Graph for MW-1

Draft ARBCA Report ALARNG OMS #28

Draft ARBCA Report ALARNG OMS #28

٥L

RBCA SUMMARY REF		LARNG					ATTACH	والمتحديد بالاتها فيتوافي بالبات		
SITE	REPRESE	NTATIVE	CONCE	ENTRATI	ON CAL	CULATIC	ONS (Page	1 of 2)		and the second second second
	Surficia	l Soil Concer	itration	S	ubsurface So	il Concentra	tion	Ground	iwater Conce	ntration
CHEMICALS OF CONCERN	Maximum Detected [mg/kg]	Arithmetic Average [mg/kg]	Area- weighted Average (1) [mg/kg]	Maximum Detected [mg/kg]	Arithmetic Average [mg/kg]	Area- weighted Average (1) [mg/kg]	Source Area weighted Average (1) [mg/kg]	1	Arithmetic Average [mg/L]	Area- weighted Average (1) [mg/L]
Benzene	[80]	[86]		3,50E-03	2.66E-03	2.67E-03		1.84E+00	2.63E-02	4.29E-02
Ethylbenzene				3.50E-03	2.66E-03	2.67E-03	*-	3.70E+00	8.43E-02	6.47E-02
Methyl-Tert-Butyl-Ether (MtBE)				3.50E-03	2.66E-03	2.67E-03		2.50E-02	6.53E-03	8.12E-03
Naphthalene				9.60E-03	3.91E-03	3.91E-03		3.53E-01	4.62E-02	6.72E-02
Toluene	- <u> </u>			4.30E-03	2.64E-03	2.64E-03		1.09E+01	3.59E-02	2.70E-02
Xylenes (Total)	**************************************			1.05E-02	8.21E-03	8.22E-03		1.14E+01	1.41E-01	1.10E-01
ТРН				4.93E+01	1.28E+01	1. 22 E+01	2.45E+01			
Lead (2)								6.00E,-03	3.60E-03	
PAHs (3)	·									
Anthracene			·					5.00E-04		
Benzo(a)anthracene								1.00E-04		
Benzo(a)pyrene								1.00E-04		
Benzo(b)fluoranthene								1.90E-04		
Benzo(g,h,i)perylene								5.00E-04		
Benzo(k)fluoranthene								2.50E-04		
Chrysene								5.00E-04		
Fluoranthene								2.00E-04		·····
Fluorene								5.00E-04		
Phenanthrene			·····					3.80E-04		
Pyrene								5.00E-04		
Notes:	2 - Lead a document 3 - Trace	maximum is t sample turt	for recent s bidity or san ons in grou	amples colle npling proce ndwater sam	cted with lo dures and ar ple are <1/2	w-stress same re not consider the detection	in this report npling proced lered reliable on limit; maxi ocedures	ures; previo for inorgani	c analytes.	

ON-SITE						······································					
Polygon Element	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8	III	TOTALS	AWA
Sequential Ref. #	1	2	3	4	5	6	7	8			
On-site Area ft sq	1199	1760	238	0	0	7156	0	467		10820	
On-site Ai Area m sq	111.4	163.5	22.1	0.0	0.0	664.8	0.0	43.4	1	1005.2	
Benzene											
On-site Ai Area m sq	111.4	163.5	22.1			664.8		43.4		1005.2	
C avg,i Mean Conc.(ppm)	0.1390	0.0001	0.0005	-	0.0003	0.0413	0.0001	0.0028			0.04289
A i * C avg,i Area Mean	15.483	0.014	0.011			27.478		0.123		43.108	
Ethylbenzene											
On-site Ai Area m sq	111.4	163.5	22.1			664.8		43.4		1005.2	
C avg,i Mean Conc.(ppm)	0.5767	0.0001	0.0012	-	0.0084	0.0010	0.0001	0.0028			0.06473
A i * C avg,i Area Mean	64.233	0.014	0.027			0.670		0.123		65.067	
Methyl-Tert-Butyl-Ether (MtBE)										
On-site Ai Area m sq	111.4	163.5	22.1			664.8		43.4		1005.2	
C avg,i Mean Conc.(ppm)	0.0208	0.0001	0.0050	-	0.0084	0.0084	0,0001	0.0028			0.00812
A i * C avg,i Area Mean	2.321	0.016	0.111			5.595		0.123		8.165	
Naphthalene											
On-site Ai Area m sq	111.4	163.5				664.8		43.4		983,1	
C avg,i Mean Conc.(ppm)	0.2000	0.0001	-	-	0.0084	0.0657	0,0001	0.0028			0.06721
A i * C avg, i Area Mean	22.277	0.020				43.655		0.123		66.075	
Toluene											
On-site Ai Area m sq	111.4	163.5	22.1			664.8		43.4		1005,2	
C avg,i Mean Conc.(ppm)	0.2392	0.0001	0.0002	-	0.0084	0.0005	0.0001	0.0028			0.02696
A i * C avg,ì Area Mean	26.647	0.014	0.005			0.307		0.123		27.095	
Xylenes (Total)											
On-site Ai Area m sq	111.4	163,5	22.1			664,8		43.4		1005,2	
C avg,i Mean Conc.(ppm)	0.9503	0.0003	0.0018	*	0.0170	0.0061	0.0005	0.0083			0.10982
A i * C avg,i Area Mean	105.855	0.055	0.040			4.077		0.358		110.385	

Attachment 15 - Representative Site Concentration Calculations

						Date Sa	mpled					
MW-1	PELA	ACT	ACT	ACT	ACT	PELA	PELA	PELA	UNK	BSC	BSC	BSC
Sample date	4/15/1994	2/14/1995	6/26/1995	10/5/1995	12/27/1995	5/28/1996	2/27/1997	7/9/1997	10/3/2001	3/11/2004	11/10/2004	4/10/2005
Water level, ft msl	23.59	24.21			24.09	24.34	25.23	25.92		24.39		24.77
Benzene	1840	34.74	29.39	407.9	359.1	1330	805	380			140	77
Ethylbenzene	3700	<5.0	3.73	1	<5.0	1570	1600	1170	2400	750		400
MTBE						<25.0				<5.0	<5.0	<5.0
Toluene	10900	16.72	13.12	828.4	792.3	8130	5100	1490	730	140	7.6	570
Total Xylenes	11400	<5.0	670	1784	1913	4900	9240	3680	2400	1021	400	1230
Anthracene	<1.9		·		<5.0					<1.0	<1.0	<1.0
Benzo(a)anthracene	<3.1				<5.0					<0.2	<0.2	<0.2
Benzo(a)pyrene	<2.5				<5.0					<0.2	<0.2	<0.2
Benzo(b)fluoranthene	<2.5		}		<5.0					<0.2	0.19 JP	<0.2
Benzo(g,h,i)perylene	<4.1		}		<5.0					<1.0	<1.0	<1.0
Benzo(k)fluoranthene	<2.5				<5.0					<0.5	<0.5	<0.5
Chrysene	<2.5				<5.0					<1.0	<1.0	<1.0
Fluoranthene	<2.2				<5.0					<1.0	0.2 JP	<1.0
Fluorene	<1.9				<5.0					<1.0	<1.0	<1.0
Napthalanene	353				64.7					200	260	140
Phenanthrene	<5.4				<5.0					<1.0	0.38 JP	<1.0
Pyrene	<1.9	••••			<5.0					<1.0	<1.0	<1.0
Lead	35				60					2	<5.0	2.6 J

		-				Date Sa	mpled					
MW-2	PELA	ACT	ACT	ACT	ACT	PELA	PELA	PELA	UNK	BSC	BSC	BSC
Sample date	4/15/1994	2/14/1995	6/26/1995	10/5/1995	12/27/1995	5/28/1996	2/27/1997	7/9/1997	10/3/2001	3/11/2004	11/10/2004	4/10/2005
Water level, ft msl	23.89	24.36		,	24.29	24.08	25.9	26.14		24.52	24	24.57
Benzene	<0.01	<5.0	<5.0	<5.0	<5.0	<0.01	<0.01	<0.01		<1.0	<0.25	<0.25
Ethylbenzene	<0.01	<5.0	<5.0	<5.0	<5.0	<0.01	<0.01	<0.01	<1.0	<5.0	<0.25	<0.25
MTBE						<0.1			<10		<0.25	<0.25
Toluene	<0.01	<5.0	<5.0	<5.0	2.51 J	<0.01	<0.01	<0.01	<1.0	****	<0.25	<0.25
Total Xylenes	<0.02	<5.0	<5.0	<5.0	<5.0	<0.02	<0.02	<0.02	<2.0	<10.0	<0.50	
Anthracene					<5.0					<1.0	<1.0	<1.0
Benzo(a)anthracene					<5.0					<0.2	<0.2	<0.2
Benzo(a)pyrene					<5.0					<0.2	<0.2	<0.2
Benzo(b)fluoranthene					<5.0					<0.2	<0.2	<0.2
Benzo(g,h,i)perylene					<5.0					<1.0	<1.0	<1.0
Benzo(k)fluoranthene					<5.0					<0.5	<0.5	<0.5
Chrvsene					<5.0					<1.0	<1.0	<1.0
Fluoranthene					<5.0					<1.0	<1.0	
Fluorene					<5.0					<1.0	<1.0	<1.0
Napthalanene					<5.0					<1.0	<1.0	<1.0
Phenanthrene					<5.0					<1.0	<1.0	<1.0
Pyrene					<5.0					<1.0	<1.0	<1.0
Lead	21				20					ND	3.0 JB	

						Date Sa	*****************************					
MVV-3	PELA	ACT	ACT	ACT	ACT	PELA	PELA	PELA	UNK	BSC	BSC	BSC
Sample date	4/15/1994	2/14/1995	6/26/1995	10/5/1995	12/27/1995	5/28/1996	2/27/1997	7/9/1997	10/3/2001	3/11/2004	11/10/2004	4/10/2005
Water level, ft msl	23.71	24.32			24.19	24.24	25.62			24.84		25.23
Benzene	2.11	<5.0	4.91	10.4	<5.0	<0.1	0.49			<1.0	<0.25	<0.25
Ethylbenzene	3.39	<5.0	<5.0	8.45	<5.0	<0.1	0.89	<0.2		1.2	<0.25	<0.25
MTBE	NA	NA	NA	NA	NA	<1.0	NA	NA	<10			<0.25
Toluene	1.36	3.21	1.93	2.95	8.75	4.71	6.5	30.7			<0.25	<0.25
Total Xylenes	1.5	ND	3.32	3.92	11.91	6.97	9.4	<0.40	<2.0	1.8	<0.50	<0.50
Anthracene					<5.0					<1.0	<1.0	<1.0
Benzo(a)anthracene					<5.0					<0.2	<0.2	<0.2
Benzo(a)pyrene					<5.0					<0.2	<0.2	<0.2
Benzo(b)fluoranthene					<5.0					<0.2	<0.2	<0.2
Benzo(g,h,i)perylene					<5.0					<1.0	<1.0	<1.0
Benzo(k)fluoranthene	{				<5.0					<0.5	<0.5	<0.5
Chrysene					<5.0					<1.0	<1.0	<1.0
Fluoranthene					<5.0					<1.0	<1.0	<1.0
Fluorene					<5.0					<1.0	<1.0	<1.0
Napthalanene					30.9					0.6 JP	<1.0	<1.0
Phenanthrene					<5.0					<1.0	<1.0	<1.0
Pyrene					<5.0					<1.0	<1.0	<1.0
Lead	13				30					4	5.0 B	5.4

						Date Sa						
MW-4	PELA	ACT	ACT	ACT	ACT	PELA	PELA	PELA	UNK	BSC	BSC	400000000000000000000000000000000000000
Sample date	4/15/1994	2/14/1995	6/26/1995	10/5/1995	12/27/1995	5/28/1996	2/27/1997	************************	10/3/2001	3/11/2004	11/10/2004	4/10/2005
Water level, ft msl	23.93	24.52			24.41	24.62	*****					
Benzene	1.52	<5.0	<5.0	<5.0	<5.0	<0.01		<0.01	<1.0			
Ethylbenzene	1.09	<5.0	<5.0	<5.0	<5.0	<0.01	<0.01	<0.01	<1.0			
MTBE	NA	NA	NA	NA	NA	<0.1	NA		<10			
Toluene	1.02	<5.0	<5.0	<5.0	<5.0	<0.01		<0.01	<1.0			
Total Xylenes	<0.02	<5.0	<5.0	<5.0	<5.0	<0.02	<0.02	<0.02	<2.0			
Anthracene	<1.9				<5.0							
Benzo(a)anthracene	<3.1				<5.0							
Benzo(a)pyrene	<2.5				<5.0							
Benzo(b)fluoranthene	<2.5				<5.0							
Benzo(g,h,i)perylene	<4.1				<5.0				***			
Benzo(k)fluoranthene	<2.5				<5.0							
Chrysene	<2.5		}		<5.0							
Fluoranthene	<2.2				<5.0							
Fluorene	<1.9				<5.0							
Napthalanene	<1.6				<5.0							Į
Phenanthrene	<5.4				<5.0							
Pyrene	<1.9				<5.0							
Lead	86				40							

						Date Sa	mpled					
MW-5	PELA	ACT	ACT	ACT	ACT	PELA	PELA	PELA	UNK	BSC	BSC	BSC
Sample date	11/2/1994	2/14/1995	6/26/1995	10/5/1995	12/27/1995	5/28/1996	2/27/1997	7/9/1997	10/3/2001	3/11/2004	11/10/2004	4/10/2005
Water level, ft msl	23.02	23.73			23	22.28	23.64	24.48		23.21	22.77	
Benzene	<0.01	<5.0	<5.0	<5.0	<5.0	<0.01	<0.01	<0.01	1.4	<1.0	<0.25	<0.25
Ethylbenzene	<0.01	<5.0	<5.0	<5.0	<5.0	<0.01	<0.01	<0.01	<1.0	<5.0	<0.25	<0.25
MTBE	NA	NA	NA	NA	NA	<0.1	NA	NA	<10		<0.25	<0.25
Toluene	<0.01	<5.0	<5.0	<5.0	<5.0	<0.01	<0.01	<0.01	<1.0	<5.0	<0.25	<0.25
Total Xylenes	<0.02	<5.0	<5.0	<5.0	<5.0	<0.02	<0.02	<0.02	<2.0	<10.0	<0.50	<0.50
Anthracene	<1.9				<5.0					<1.0	<1.0	<1.0
Benzo(a)anthracene	<3.1				<5.0					<0.2	<0.2	<0.2
Benzo(a)pyrene	<2.5				<5.0					<0.2	<0.2	<0.2
Benzo(b)fluoranthene	<2.5	{			<5.0					<0.2	<0.2	<0.2
Benzo(g,h,i)perylene	<4.1				<5.0					<1.0	<1.0	<1.0
Benzo(k)fluoranthene	<2.5				<5.0					<0.5	<0.5	<0.5
Chrysene	<2.5				<5.0					<1.0	<1.0	<1.0
Fluoranthene	<2.2				<5.0					<1.0	<1.0	<1.0
Fluorene	<1.9				<5.0					<1.0	<1.0	<1.0
Napthalanene	<1.6				<5.0					0.40 JP	0.20 JP	<0.25
Phenanthrene	<5.4				<5.0					<1.0	<1.0	<1.0
Pyrene	<1.9				<5.0					<1.0	<1.0	<1.0
Lead					30					2	0.004	4.4 J

						Date Sa	Impled					
MW-6	PELA	ACT	ACT	ACT	ACT	PELA	PELA	PELA	UNK	BSC	BSC	BSC
Sample date	11/2/1994	2/14/1995	6/26/1995	10/5/1995	12/27/1995	5/28/1996	2/27/1997	***************************************	10/3/2001	3/11/2004	11/10/2004	4/10/2005
Water level, ft msi	23.36	24.09			22.86	22.48	23.79			22.9	22.6	23.14
Benzene	<0.01	<5.0	<5.0	<5.0	<5.0	<0.01	<0.01	<0.01	<1.0	23	60	41
Ethylbenzene	<0.01	<5.0	<5.0	<5.0	<5.0	<0.01	<0.01	<0.01	<1.0	1.4	<1.2	1.5
MTBE	NA	NA	NA	NA	NA	<0.1	NA	NA	<10	<5.0	<1.2	<1.2
Toluene	<0.01	<5.0	<5.0	<5.0	<5.0	<0.01	<0.01	<0.01	<1.0	<5.0	<1.2	0.71
Total Xylenes	<0.02	<5.0	<5.0	<5.0	<5.0	<0.02	<0.02	<0.02	<2.0	0.55	10.5	6.5
Anthracene	<1.9				<5.0					<1.0	<1.0	<1.0
Benzo(a)anthracene	<3.1	}			<5.0					<0.2	<0.2	<0.2
Benzo(a)pyrene	<2.5				<5.0					<0.2	<0.2	<0.2
Benzo(b)fluoranthene	<2.5				<5.0					<0.2	<0.2	<0.2
Benzo(g,h,i)perylene	<4.1	(<5.0					<1.0	<1.0	<1.0
Benzo(k)fluoranthene	<2.5				<5.0					<0.5	<0.5	<0.5
Chrysene	<2.5				<5.0					<1.0	<1.0	<1.0
Fluoranthene	<2.2				<5.0					<1.0	0.076 JP	<1.0
Fluorene	<1.9				<5.0					<1.0	<1.0	<1.0
Napthalanene	<1.6				<5.0					50	88	59
Phenanthrene	<5.4				<5.0					<1.0	0.20 JP	<1.0
Pyrene	<1.9									<1.0	<1.0	<1.0
Lead	15				30					1.4	3	2.7 J

						Date Sa	mpled					
MW-7	PELA	ACT	ACT	ACT	ACT	PELA	PELA	PELA	UNK	BSC	BSC	BSC
Sample date	4/15/1994	2/14/1995	6/26/1995	10/5/1995	12/27/1995	5/28/1996	2/27/1997	7/9/1997	10/3/2001	3/11/2004	11/10/2004	4/10/2005
Water level, ft msl											25.23	25.36
Benzene											<0.25	<0.25
Ethylbenzene											<0.25	<0.25
MTBE											<0.25	<0.25
Toluene											<0.25	<0.25
Total Xylenes											<0.50	<0.50
Anthracene											<1.0	<1.0
Benzo(a)anthracene	***										<0.2	<0.2
Benzo(a)pyrene											<0.2	<0.2
Benzo(b)fluoranthene											<0.2	<0.2
Benzo(g,h,i)perylene											<1.0	<1.0
Benzo(k)fluoranthene											<0.5	<0.5
Chrysene											<1.0	<1.0
Fluoranthene		•									<1.0	<1.0
Fluorene											<1.0	<1.0
Napthalanene											<1.0	<1.0
Phenanthrene											<1.0	<1.0
Pyrene											<1.0	<1.0
Lead											6	3.7 J

						Date Sa	impled					
MW-8	PELA	ACT	ACT	ACT	ACT	PELA	PELA	PELA	UNK	BSC	BSC	BSC
Sample date	4/15/1994	2/14/1995	6/26/1995	10/5/1995	12/27/1995	5/28/1996	2/27/1997	7/9/1997	10/3/2001	3/11/2004	11/10/2004	4/10/2005
Water level, ft msl	••••										22.19	22.5
Benzene		****									<5.0	<6.3
Ethylbenzene		~~~*									<5.0	<6.3
MTBE											<5.0	<6.3
Toluene											<5.0	<6.3
Total Xylenes											<15.0	<12.6
Anthracene											<1.0	<1.0
Benzo(a)anthracene											<0.2	<0.2
Benzo(a)pyrene											<0.2	<0.2
Benzo(b)fluoranthene											<0.2	<0.2
Benzo(g,h,i)perylene											<1.0	<1.0
Benzo(k)fluoranthene											<0.5	<0.5
Chrysene											<1.0	<1.0
Fluoranthene											<1.0	<1.0
Fluorene											<1.0	<1.0
Napthalanene											<1.0	<1.0
Phenanthrene						****					<1.0	<1.0
Pyrene											<1.0	<1.0
Lead											<5.0	

Parameter	Symbol	Unit	Tier 1 Values	Values Used	Source
SOIL PARAMETERS:				L	
Width of Source Area Parallel to wind or GW Flow Direction	W	cm	1500	1500	Tier 1
Depth to Subsurface Soil Sources	Ls	cm	30.48	30.48	Tier 1
Lower Depth of Surficial Soil Zone	d	cm	30.48	30.48	Tier 1
Thickness of Capillary Fringe	hcap	cm	5	5	Tier 1
Thickness of Vadose Zone	hv	cm	295	295	Tier 1
Dry Soil Bulk Density	ρ_s	g/cm ³	1.8	1.8	Tier 1
Fractional Organic Carbon Content	foc	g-C/g-soil	0.01	0.01	Tier 1
Total Soil Porosity	θτ	cm ³ /cm ³ -soil	0.3	0.3	Tier 1
Volumetric Water Content in Capillary Fringe	θ_{wcap}	cm ³ /cm ³	0.27	0.27	Tier 1
Volumetric Water Content in Vadose Zone	θ _{ws}	cm ³ /cm ³	0.1	0.1	Tier 1
Volumetric Water Content in Foundation or Wall Cracks	θ_{wcrack}	cm ³ /cm ³	0.1	0.1	Tier 1
Volumetric Air Content in Capillary Fringe	θ_{acap}	cm ³ /cm ³	0.03	0.03	Tier 1
Volumetric Air Content in Vadose Zone	θ_{as}	cm ³ /cm ³	0.2	0.2	Tier 1
Volumetric Air Content in Foundation/Wall Cracks	θ_{acrack}	cm ³ /cm ³	0.2	0.2	Tier 1
GROUNDWATER PARAMETERS:					
Depth to Groundwater	Lgw	cm	300	300	Tier 1
Groundwater Darcy Velocity	Ugw	cm/year	157.68	157.68	Tier 1
Groundwater Mixing Zone Thickness	δ _{gw}	cm	200	200	Tier 1
Infiltration Rate	I	cm/year	14.8	14.8	Tier 1
AMBIENT AIR PARAMETERS:				L	
Breathing Zone Height	δ _a	cm	200	200	Tier 1
Wind Speed within the Breathing Zone	Ua	cm/s	225	225	Tier 1
ENCLOSED SPACE PARAMETERS:		,,,		I	
Enclosed Space Air Exchange Rate:					Tier 1
Residential	ER	1/sec	0.00014	0.00014	Tier 1
Commercial/Construction Worker	ER	1/sec	0.00023	0.00023	Tier 1
Enclosed Space Volume/Infiltration Area Ratio:					
Residential	Lb	cm	200	200	Tier 1
Commercial/Construction Worker	Lb	cm	300	300	Tier 1
Enclosed Space Foundation or Wall Thickness					
Residential	Lcrack	cm	15	15	Tier 1
Commercial/Construction Worker	Lorack	cm	15	15	Tier 1
Areal Fraction of Cracks in Foundation/Walls					
Residential	η	cm ² /cm ²	0.01	0.01	Tier 1
Commercial/Construction Worker	η	cm ² /cm ²	0.01	0.01	Tier 1
PARTICULATE EMISSION RATE	·	I		l	
Residential and Commercial	Pe	g/cm ² sec	6.90E-14	6.90E-14	Tier 1
Construction Worker	Pe	g/cm ² sec	6.90E-09	6.90E-09	Tier 1
AVERAGING TIME FOR VAPOR FLUX		0		ł	
Resident Child	τ	scc	1.89E+08	1.89E+08	Tier 1
Resident Adult	τ	sec	9.46E+08	9.46E+08	Tier 1
Commercial Worker	τ	sec	7.88E+08	7.88E+08	Tier 1
Construction Worker	τ	sec	3.15E+07	3.15E+07	Tier 1

FATE AND TRANSPORT PARAMETERS

GROUNDWATER RESOURCE PROTECTION

Parameter	Unit	Tier 1 Values	Values Used	Source
SITE PARAMETERS:				
Distance to the Point of Exposure (Xpoe)	ft	variable	500	
Longitudinal dispersivity	ft	variable	50	
Transverse dispersivity	ft	variable	16.7	
Vertical dispersivity	ft	variable	2.5	
Distance to the Point of Compliance (Xpoc)	ft	variable	200	
Longitudinal dispersivity	ft	variable	20	
Transverse dispersivity	ft	variable	6.7	
Vertical dispersivity	ft	variable	1	

NOTE: The dispersivities (in red) are calculated, however the user may over-write the values. Additional input parameters required to calculate the allowable soil concentrations protective of groundwater, whose values are input on other screens include:

Source Dimensions

Width of Source Area Parallel to wind or GW Flow Direction (W) Groundwater Mixing Zone Thickness (δ_{ew})

Soil and Groundwater Properties

 $\begin{array}{l} \mbox{Dry Soil Bulk Density} \ (\rho_s) \\ \mbox{Total Soil Porosity} \ (\theta_T) \\ \mbox{Groundwater Darcy Velocity} \ (Ugw) \\ \mbox{Fractional Organic Carbon Content (foc)} \end{array}$

Chemical Specific Properties

Organic Carbon Adsorption Co-efficient (Koc) Soil Water Distribution Co-efficient (Kd)

Soil Water Sorption Co-efficient (Ks)

- For organics, Ks = foc x Koc

- For metals, Ks = Kd

CHEMICALS	Target	Dry Leaching	User Specified	Satu	rated	Soil Conc.	Allowable	Allowable
OF	Groundwater	Factor	Unsaturated	Zone	DAF	Protective of	Groundwater	Groundwater
CONCERN	Conc.at POE	Groundwater	Zone DAF	at POC	at POE	Groundwater	Conc. at POC	Conc. at Source
	[mg/L]	(LFsw)	[]	[]	[]	[mg/kg]	[mg/L]	[mg/L]
ORGANICS								
Benzene	5.00E-03	5.92E-01	1	1.06E+01	6.34E+01	5.35E-01	2.98E-02	3.17E-01
Toluene	1.00E+00	2.78E-01	1	1.06E+01	6.34E+01	2.28E+02	5.97E+00	6.34E+01
Ethylbenzenc	7.00E-01	1.94E-01	1	1.06E+01	6.34E+01	2.29E+02	4.18E+00	4.44E+01
Xylenes (mixed)	1.00E+01	1.60E-01	1	1.06E+01	6.34E+01	5.10E+02 *	5.97E+01	1.98E+02 #
Methyl-tert-butyl-ether (MtBE)	2.00E-02	2.32E+00	1	1.06E+01	6.34E+01	5.46E-01	1.19E-01	1.27E+00
Anthracene	4.34E-02	1.76E-03	1	1.06E+01	6.34E+01	1.02E+01 *	4.34E-02 #	4.34E-02 #
Benzo(a)anthracene	1.17E-03	1.15E-04	1	1.06E+01	6.34E+01	3.37E+01 *	6.96E-03	9.40E-03 #
Bcnzo(a)pyrene	2.00E-04	4.26E-05	1	1.06E+01	6.34E+01	1.16E+01 *	1.19E-03	1.20E-03 #
Benzo(b)fluoranthenc	1.17E-03	3.36E-05	1	1.06E+01	6.34E+01	1.85E+01 ·	1.50E-03 #	1.50E-03 #
Benzo(g,h,i)perylene	7.00E-04	2.61E-05	1	1.06E+01	6.34E+01	1.11E+01 *	7.00E-04 #	7.00E-04 #
Benzo(k)fluoranthene	8.00E-04	3.36E-05	1	1.06E+01	6.34E+01	9.84E+00 *	8.00E-04 #	8.00E-04 #
Chrysene	1.60E-03	1.04E-04	1	1.06E+01	6.34E+01	6.37E+00 *	1.60E-03 #	1.60E-03 #
Fluoranthene	2.06E-01	8.41E-04	1	1.06E+01	6.34E+01	1.01E+02 *	2.06E-01 #	2.06E-01 #
Fluorenc	1,46E+00	5.35E-03	1	1.06E+01	6.34E+01	1.53E+02 *	1.98E+00 #	1.98E+00 #
Naphthalene	2.00E-02	3.45E-02	1	1.06E+01	6.34E+01	3.67E+01	1.19E-01	1.27E+00
Phenanthrene	1.00E+00	2.93E-03	1	1.06E+01	6.34E+01	1.41E+02 *	1.00E+00 #	1.00E+00 #
Pyrene	1.35E-01	6.07E-04	1	1.06E+01	6.34E+01	9.1 <u>8E+01</u> *	1.35E-01 #	1.35E-01 #
METALS								
Arsenic		6.44E-03	1	1.06E+01	6.34E+01		#VALUE!	#VALUE!
Barium		1.01E-02	1	1.06E+01	6.34E+01		#VALUE!	#VALUE!
Cadmium		5.50E-03	1	1.06E+01	6.34E+01		#VALUE!	#VALUE!
Chromium V1		2.17E-02	1	1.06E+01	6.34E+01		#VALUE!	#VALUE!
Lead	1.50E-02	3.38E-03	1	1.06E+01	6.34E+01	2.81E+02	8.95E-02	9.50E-01
Zinc		6.66E-03	1	1.06E+01	6.34E+01		#VALUE!	#VALUE!

GROUNDWATER RESOURCE PROTECTION - WITHOUT DECAY

NOTE:

*: Calculated concentrations exceeded saturated soil concentration and hence saturated soil concentrations are listed soil concentrations protective of groundwater.

#: Calculated concentrations exceeded pure component water solubility and hence water solubilities are listed as allowable groundwater concentrations at the POE and/or POE. Soil concentrations are presented on a dry weight basis.

View East From MW-1

View North From MW-1

View West From MW-1

View South From MW-1